PML

STAD91 Winter 2026 - Bayesian Statistical Inference

The language of probability allows us to coherently and automatically account for uncertainty. This course will teach you how to build, fit, and do inference in probabilistic models. These models let us generate novel images and text, find meaningful latent representations of data, take advantage of large unlabeled datasets, and even let us do analogical reasoning automatically. It will offer a broad view of model-building and optimization techniques that are based on probabilistic building blocks which will serve as a foundation for more advanced machine learning courses.

January 2026 · Thibault Randrianarisoa