

STAD91: Quiz 1 Practice

Instructor: Thibault Randrianarisoa

Questions

Question 1 You have designed a new estimator $\hat{\theta}_n$. You have successfully proven that its quadratic risk converges to zero as $n \rightarrow \infty$ (i.e., $\mathbb{E}[(\hat{\theta}_n - \theta)^2] \rightarrow 0$). Which form of convergence is **NOT** automatically guaranteed?

- a) Convergence in Probability ($\hat{\theta}_n \xrightarrow{\mathbb{P}} \theta$).
- b) Convergence in Distribution ($\hat{\theta}_n \xrightarrow{\mathcal{L}} \theta$).
- c) Almost Sure Convergence ($\hat{\theta}_n \xrightarrow{a.s.} \theta$).
- d) Convergence in L^2 .

Question 2 You are working with a $\text{Bernoulli}(\theta)$ model where the Maximum Likelihood Estimator is the empirical mean, $\hat{\theta}_n = \bar{X}_n$. This estimator is asymptotically normal with asymptotic variance $\theta(1 - \theta)$. What is a $1 - \alpha$ asymptotic confidence interval for θ ?

- a) $\left[\bar{X}_n \pm \frac{q_\alpha}{\sqrt{n}} \right]$
- b) $\left[\bar{X}_n \pm \frac{q_\alpha \sqrt{\theta(1-\theta)}}{\sqrt{n}} \right]$
- c) $\left[\bar{X}_n \pm \frac{q_\alpha \sqrt{\bar{X}_n(1-\bar{X}_n)}}{\sqrt{n}} \right]$
- d) $\left[\bar{X}_n \pm \frac{q_\alpha \bar{X}_n(1-\bar{X}_n)}{\sqrt{n}} \right]$

Question 3 Based on the properties of distributions defined in the slides, which of the following random variables does **NOT** follow a Uniform distribution on $[0, 1]$?

- a) A random variable $X \sim \text{Beta}(1, 1)$.
- b) The ratio $R = \frac{E_1+E_2}{E_1+E_2+E_3+E_4}$, where E_i are independent $\Gamma(1/2, \lambda)$ variables.
- c) The first component X_1 of a random vector $(X_1, X_2) \sim \text{Dir}(1, 1)$.
- d) The first component X_1 of a random vector $(X_1, X_2, X_3) \sim \text{Dir}(1, 1, 1)$.

Question 4 If you choose to use a different, suboptimal predictor $\varphi(X)$ instead of the optimal $m(X)$ to minimize $\mathbb{E}[(Y - \varphi(X))^2]$, what exactly is the extra penalty you incur?

- a) The penalty is the cross-term: $2\mathbb{E}[(Y - m(X))(m(X) - \varphi(X))]$.
- b) The penalty is the Mean Squared Error of the optimal predictor itself: $\mathbb{E}[(Y - m(X))^2]$.
- c) The penalty is the mean squared distance between your predictor and the optimal one: $\mathbb{E}[(m(X) - \varphi(X))^2]$.
- d) The penalty is zero as long as your predictor $\varphi(X)$ is unbiased.

Solutions

1. Correct Answer: c) Almost Sure Convergence.

Reasoning: Convergence of the Quadratic Risk to zero is equivalent to Convergence in L^2 . L^2 convergence implies Convergence in Probability, which in turn implies Convergence in Distribution. However, there is no implication from L^2 or Probability to Almost Sure convergence.

2. Correct Answer: c) $\left[\bar{X}_n \pm \frac{q_\alpha \sqrt{\bar{X}_n(1-\bar{X}_n)}}{\sqrt{n}} \right]$

Reasoning: The general construction requires replacing the unknown true variance $\sigma^2(\theta)$ with the estimated variance $\sigma^2(\hat{\theta}_n)$. Since the asymptotic variance is $\theta(1-\theta)$, the estimated standard deviation is $\sqrt{\bar{X}_n(1-\bar{X}_n)}$. Answer (b) is incorrect because it relies on the unknown θ .

3. Correct Answer: d) The first component X_1 of $(X_1, X_2, X_3) \sim Dir(1, 1, 1)$.

Reasoning:

- a) Slides state explicitly $Beta(1, 1) = \mathcal{U}[0, 1]$.
- b) By Gamma additivity, $E_1 + E_2 \sim \Gamma(1, \lambda)$ and $E_3 + E_4 \sim \Gamma(1, \lambda)$, independently. The ratio of independent $\Gamma(a, \lambda)$ and $\Gamma(b, \lambda)$ is $Beta(a, b)$. Here $a = 1, b = 1$, so it is $Beta(1, 1)$ (Uniform).
- c) For $K = 2$, $Dir(\alpha_1, \alpha_2)$ is $Beta(\alpha_1, \alpha_2)$. So this is $Beta(1, 1)$ (Uniform).
- d) Marginals are $X_i \sim Beta(\alpha_i, \sum \alpha_k - \alpha_i)$. Here $\alpha_1 = 1$ and $\sum \alpha_k = 3$. So $X_1 \sim Beta(1, 2)$, which is **not** Uniform.

4. Correct Answer: c) The penalty is the mean squared distance between your predictor and the optimal one: $\mathbb{E}[(m(X) - \varphi(X))^2]$.

Reasoning: The error decomposes into the irreducible error plus a non-negative term: $\mathbb{E}[(\mathbb{E}[Y|X] - \varphi(X))^2]$. The cross-term (Answer a) vanishes (is zero) due to the orthogonality property.