

Problem Sheet 2: Prior choice

1. Bernoulli Model

Consider the model $\mathcal{P} = \{\mathcal{B}(\theta), \theta \in (0, 1)\}$. Compute the Fischer information.

2. Conjugate Distributions

Show that the following families of prior distributions are conjugate for $n \geq 1$. In each case, give the expression for the posterior mean.

1. The family of Gaussian distributions $\mathcal{N}(\mu, \sigma^2)$ for $\mathcal{P} = \{P_\theta^{(n)} = \mathcal{N}(\theta, 1)^{\otimes n}, \theta \in \mathbb{R}\}$.
2. The family of Gamma distributions $\mathcal{G}(a, b)$ for $\mathcal{P} = \{P_\lambda^{(n)} = \mathcal{E}(\lambda)^{\otimes n}, \lambda > 0\}$.
3. The family of Beta distributions $\mathcal{B}(a, b)$ for $\mathcal{P} = \{P_p^{(n)} = \mathcal{B}(n, p), p \in [0, 1]\}$.

3. Sequential Posterior and Information

We place ourselves in the following Bayesian framework for observations X_1, \dots, X_n and for θ :

$$\theta \sim \Pi, \quad d\Pi = \pi d\nu,$$

$$X_1, \dots, X_n \mid \theta \sim P_\theta^{\otimes n}, \quad dP_\theta = p_\theta d\mu.$$

1. Characterize the posterior distributions of $\theta \mid X_1$ and $\theta \mid X_1, X_2$ by giving the corresponding posterior densities.
2. Show that the posterior distribution of θ given X_1, X_2 in the original model (where θ follows the prior Π) coincides with the posterior distribution of θ given X_2 in a model where one takes $\Pi[\cdot \mid X_1]$ as the prior distribution.
3. Generalize the previous result to $\theta \mid X_1, \dots, X_n$. Is there a difference taking the posterior directly with respect to all observations versus sequentially, observation by observation?
4. Does the order of X_i in the conditioning $\theta \mid X_1, \dots, X_n$ matter? What would happen if $X_1, \dots, X_n \mid \theta$ did not follow a product distribution (i.e., not i.i.d.)?
5. We now ask if conditioning on an observation might have no effect, i.e., if we can have $\mathcal{L}(\theta \mid X) = \mathcal{L}(\theta)$. Let $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$ and

$$X \mid \theta \sim \mathcal{N}\left(\frac{\theta_1 + \theta_2}{2}, 1\right), \quad \theta \sim \Pi,$$

with Π of the form $d\Pi(\theta) = 2h(\theta_1 + \theta_2)h(\theta_1 - \theta_2)d\theta_1 d\theta_2$, for h measurable positive and $\int h(u)du = 1$. Furthermore, let:

$$z_1 = \frac{\theta_1 + \theta_2}{2} \quad \text{and} \quad z_2 = \frac{\theta_1 - \theta_2}{2}.$$

- (a) Determine the prior distribution of $z = (z_1, z_2)$. Deduce the marginal distribution of z_2 .
- (b) Calculate the posterior density $\theta | X$ and then that of $z | X$.
- (c) Deduce the law of $z_2 | X$ and conclude. Comment (do we have identifiability?).

4. Improper prior?

Let $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ and $\pi(\mu, \sigma) = 1/\sigma$ with $\Theta = \mathbb{R} \times \mathbb{R}_*^+$. What is the value of the marginal likelihood/density $p(x_1, \dots, x_n)$ in this model? Is the measure $\pi(\mu, \sigma)$ usable?

5. Jeffreys Prior for Exponential

Let $X | \theta$ follow an exponential distribution $\mathcal{E}(\theta)$. What is the Jeffreys prior for this model?

6. Jeffreys Prior for Binomial

Calculate the Jeffreys prior on θ when $X | \theta \sim \mathcal{B}(n, \theta)$.

7. Conjugation - Multinomial Case

Consider $X | \theta$ following a multinomial distribution with $X = (X_1, \dots, X_d)$ and $\theta = (\theta_1, \dots, \theta_d)$ such that $0 \leq \theta_i \leq 1$ and $\sum_{i=1}^d \theta_i = 1$:

$$P(X_1 = k_1, \dots, X_d = k_d | \theta) = \frac{n!}{k_1! \dots k_d!} \theta_1^{k_1} \dots \theta_d^{k_d}.$$

Show that the Dirichlet distribution is conjugate for this likelihood.