Solutions to Problem Sheet 1: Maximum Likelihood and Bayesian
Inference

1. Gaussian / Exponential model

(a) Gaussian Model:
We have a single observation x ~ N(0, c?) (likelihood) and a prior 6 ~ N (m, po?).
The posterior density p(6|z) is proportional to the product of the likelihood and the prior:

p(z|0)p(0) _ p(z|0)p(0)
p(z) J p(z]0)p(0)dd
Substituting the Gaussian densities (ignoring constants independent of ):
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(b)

pT +m
1+p

Hpost =

. . . . - mipr p 9
Solution: The posterior is 0|z N( T 0 )

FExponential Model:

Suppose X ~ &(A) (Exponential) and prior A ~ G(a,b) (Gamma).
Likelihood: p(z|\) = Ae %,

Prior: p(A) = %/\a_le_w‘ oc A4 lem0A,

Posterior:

p(/\|:c) x (Aef)\:r)(Aaflefb)\) _ A(aJrl)flef(ber))\

This is the density of a Gamma distribution with parameters ' =a + 1 and V' = b + =.
Solution: The posterior is M|z ~ G(a + 1,b+ ).

2. Maximum Likelihood Estimator (MLE)

We observe two values (z1, z2).

(a)

Case (i): X1, X2 "% N(0,1).
The likelihood function is:

2 2
1 2 1
L(9) = | | ——e T2 o exp (— E (zi — 9)2>
i1 V2T 2

i=1

Maximizing the likelihood is equivalent to minimizing the sum of squared differences (z; —
6)2 + (2o — 0)%, which is convex as a function of §. The derivative is 40 — 2z; — 225 and is

equal to 0 for
A 21+ 22
OvLe = 5

Case (ii)
The joint density is given by:

73/Qexp{—(x1 + x9 — 20)2/4}
L+ (z1 — 22)?

g(z1,22/0) =

To find the MLE, we maximize g(x1, z2|0) with respect to f. Notice that the denominator
1+ (21 — 22)? does not depend on @. Thus, we only need to maximize the numerator:

(21 4+ 22 — 29)2}

Numerator o exp {— 1

This exponential is maximized when the exponent is zero (since the exponent is non-
positive):
z21 + 22
2
Remark: Even though the joint distributions in (i) (independent Gaussian) and (ii)

(dependent, heavy-tailed Cauchy-like term) are very different, they yield the exact same
Maximum Likelihood Estimator for 6.

(21+Z2—29)2=0 = W0 =214+ 20 = éMLE:

3. Bernoulli model
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(a) Show uniqueness.
The likelihood for n i.i.d. observations is L(#) = [[, 0% (1 — 6)1~% = g2 (1 — )"~ 2%,
The log-likelihood is:

00) = <Zn: xz> log 6 + (n - Zn:ml> log(1 —0)

i=1 i=1

The second derivative with respect to 0 is:

gl!(e)z_le n—sz

2 =gz U

Since z; € {0,1} and § € (0,1), both terms are negative (assuming at least one 0 and
one 1 are observed, or treating boundary cases as limits). Thus, the function is strictly
concave, implying that any critical point found is a unique global maximum.

(b) Show §(X) = X,,.
Setting the first derivative to zero:

/() = Sxp o n—> .

0 1-46
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4. Genetics

Let B denote the allele for Brown (dominant) and b denote Blue (recessive, denoted X and z
in the prompt). Genotypes: zz (blue), X (brown), XX (brown). Frequencies: P(zx) = p?,
P(zX) =2p(1 —p), P(XX) = (1 —p)2 Note: Total Brown freq = 1 — p*.

(a) Expected proportion of heterozygotes among brown-eyed children of brown-eyed parents.

We are looking for P(Heterozygote child| Brown parents and Brown child) which is:

P( Brown parents, Brown child with xX)
P( Brown parents and Brown child)

_ P( Brown parents, child with xX)

~ P( Brown parents and Brown child)’

P(xX| Brown parents and Brown child) =

using the fact that heterozygotes always have brown eyes.
The numerator is equal to:

> P( Parent 1, Parent 2, child with xX)

Parent 1e{zX,X X},
Parent 2e{zX, XX}

= Z P( child with xX|Parent 1, Parent 2) P(Parent 1, Parent 2).

Parent 1€{zX,X X},
Parent 2€{zX, XX}
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If both parents are homozygote (resp. heterozygote), the above probability is 0 (resp.
1/2), and it is 1/2 in the last case. So the above gives

(2p(1 - p))?

1 1 1
3 POX, XX) 4 5 P(XX xX) 4 5 P(xX,xX) = 2p(1—p)-(1- p)*+ 5

= 2p(1-p)*.
The denominator is equal to

P( Brown parents, child with xX) + P( Brown parents, child with XX).
Similarly, the second term is

Z P( child with XX|Parent 1, Parent 2) P(Parent 1, Parent 2),
Parent 1e{zX, XX},
Parent 2e{zX,X X}

and If both parents are homozygote (resp. heterozygote), the above probability is 1 (resp.
1/2), and it is 1/2 in the last case, so the above is

1 1 1
5 PX, XX) 45 P(XXxX) 45 P(xX xX)+P (XX, XX) = 2p(1—p)2+(1—p)* = (14p?)(1—p)%.

In the end, we obtain
2p/(1+p°).

(b) Posterior probability Judy is a heterozygote.
Let H be the event Judy is Heterozygous (zX) and D be the event Judy is Dominant
Homozygous (X X). Since Judy is the brown-eyed child of brown-eyed parents, we use the
result from (a) as her prior:

(1—p)?
1+ p?

)= P P(D)=1-P(H) =

P(H) = —2_
( T

Evidence E: She marries a heterozygote (zX) and has n brown-eyed children.
Likelihoods:

e If Judy is H (zX): Mating X X zX. Prob of brown child is 3/4, since the only way
for the child to have blue eyes is for both parents to provide allele z, with probability
1/2.

P(E|H) = (3/4)"

o If Judy is D (X X): Mating XX x xX. All children are brown (XX or zX).
P(EID)=1"=1

Posterior P(H|FE):
(E|H)P(H) + P(E|D)P(D)

(3/4)" 2 - 2p(3/4)"

(3/4) 2 +1- (igf ~ 2p(3/4)" + (1 - p)?

P(H|E) = -
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(¢) Probability Judy’s first grandchild has blue eyes.
Let K be Judy’s child (one of the n brown children). Let G be the grandchild. For G to
be blue (zz), both parents must contribute x. Assume K marries a random person from
the population. The probability the partner contributes z is 1 if it is xa (with probability
p?) and 1/2 if it is X (with probability 2p — 2p?), so it is p? + p — p? = p in total.
Now we need the probability K contributes z. Let 7, = P(H|E) be Judy’s posterior from
(b).

e Case 1: Judy is D (XX). Then K is from XX x 2X. K is XX or X with prob 0.5
each. P(K passes z|Judy D) = 0.5 x 0+ 0.5 x 0.5 = 0.25.

e Case 2: Judy is H (zX). Then K is from X X zX, but we know K is brown.
Among brown children of X x X, the genotypes are XX (1/3) and zX (2/3).
P(K passes xz|Judy H) = (1/3) x 0+ (2/3) x 0.5 =1/3.

Total prob K passes z: P(Ky) = m,(1/3) + (1 — m,)(1/4).
Finally, P(G is blue) = P(K,) x P(Partner,) = [% + 15 p.

5. Twins and Elvis Presley Let I be the event of Identical twins and F' be Fraternal.
P(I) =1/300, P(F)=1/125.
Event E: Elvis had a twin brother.
Note: We must condition on the fact that the birth was a twin birth.

P(1{Twins) — DL Twins) _ P, Twins) P(I) 1/300 125 5
ms) — = = fy g = —,
v P(Twins) P(Twins)  P(I)+ P(F)  1/300+1/125  125+300 17

We also deduce that P(F|Twins) = 2.

Now, let’s use the evidence that the second twin was a brother. Likelihood of observing Male-
Male twins (MM):

o If Identical (I): Sex is always same. Assuming 50/50 boys/girls, P(MM|I) =1/2.
e If Fraternal (F'): Sexes are independent. P(MM|F)=1/2x1/2=1/4.
Posterior probability that Elvis was an identical twin:

P(MM|I) *5/17
(MMII) % 5/17 + P(MM]|F) = 12/17

P(I|Twins, MM) = Iz

(Using raw probabilities or conditional on twins cancels out, let’s use raw).

(1/2) x5 5 5
(1/2) %5+ (1/4)*12  5+6 11’

So there is a 5/11 (approx 45.4%) chance Elvis was an identical twin.

6. Monty Hall

(a) Should the contestant switch?
Yes. Note C the event that you chose the correct door: P(C) = 1/3 (there are three
doors). Note O the event that the host revealed the door he chose. Given C, the host
had the choice between the last two doors to show you what is behind, so P(O|C) = 1/2.
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Given C°, the host could not reveal your own door or the one hiding the big prize, so it
did not have a choice and had to reveal the door he chose: P(O|C¢) = 1. Therefore,

_ P(C)P(0|C) 3
PICIO) = p@ypo10) + Plce) PG ~ T-1

1
2
+2.1

=1/3.

Therefore, there is probability 2/3 the last door is the correct one.

Calculate probabilities.

e Strategy Stay: You win only if your initial choice was correct. Since there are 3
boxes and 1 prize, P(Win) = 1/3.

e Strategy Switch: You win if your initial choice was wrong. (If you pick a losing
box, Monty reveals the other loser, leaving the winner as the switch option). Since
there are 2 losing boxes, P(Win) = 2/3.

Evil Monty Variant
Let W be the event ”Original choice is Winner” (P(W) = 1/3) and L be ”Original choice
is Loser” (P(L) = 2/3). Let O be the event ”Monty Offers a switch”.

Rules:
e If W, Monty offers switch with prob p: P(O|W) = p.
e If I, Monty always offers switch: P(O|L) = 1.

We want to know if we should switch given we are offered the chance. This is equivalent
to comparing P(L|O) (Switch wins) vs P(W|O) (Stay wins).

- P(O|L)P(L) _ 1-(2/3)
PULIO) = BoEyP(T) + PO PIW) ~ 1-3/3) +p- (1/3)
PLI0) = 50— 2

T 2/3+p/3 2+p

If p < 1, the probability of winning by switching (2/(2+ p)) is greater than the standard
2/3. If p = 0, switching guarantees a win (P = 1). Even if p = 1 (standard game), prob
is 2/3. Since p € [0, 1], P(L|O) > 2/3.

Conclusion: You should still switch. In fact, the "Evil” behavior makes switching even
more advantageous because being offered a switch is now evidence suggesting you likely
picked a losing box initially (since he might not have offered it if you had picked the
winner).
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