
Solutions to Problem Sheet 1: Maximum Likelihood and Bayesian

Inference

1. Gaussian / Exponential model

(a) Gaussian Model:
We have a single observation x ∼ N (θ, σ2) (likelihood) and a prior θ ∼ N (m, ρσ2).

The posterior density p(θ|x) is proportional to the product of the likelihood and the prior:

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

∝ p(x|θ)p(θ).

Substituting the Gaussian densities (ignoring constants independent of θ):

p(θ|x) ∝ exp

(
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2σ2

)
exp

(
−(θ −m)2

2ρσ2

)
Combining the terms in the exponent:
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ρ
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ρ
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ρ
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ρ
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ρ
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Therefore, p(θ|x) ∝ e
−

1+ 1
ρ

2σ2

[
θ−

x+mρ

1+ 1
ρ

]2
and we recognize the Gaussian distributionN (µpost, σ

2
post)

with:
σ2
post =

ρ

1 + ρ
σ2,

1



µpost =
ρx+m

1 + ρ
.

Solution: The posterior is θ|x ∼ N
(
m+ρx
1+ρ ,

ρ
1+ρσ

2
)

.

(b) Exponential Model:
Suppose X ∼ E(λ) (Exponential) and prior λ ∼ G(a, b) (Gamma).

Likelihood: p(x|λ) = λe−λx.
Prior: p(λ) = ba

Γ(a)λ
a−1e−bλ ∝ λa−1e−bλ.

Posterior:
p(λ|x) ∝ (λe−λx)(λa−1e−bλ) = λ(a+1)−1e−(b+x)λ

This is the density of a Gamma distribution with parameters a′ = a+ 1 and b′ = b+ x.

Solution: The posterior is λ|x ∼ G(a+ 1, b+ x).

2. Maximum Likelihood Estimator (MLE)

We observe two values (z1, z2).

(a) Case (i): X1, X2
i.i.d.∼ N (θ, 1).

The likelihood function is:

L(θ) =
2∏
i=1

1√
2π
e−(zi−θ)2/2 ∝ exp

(
−1

2

2∑
i=1

(zi − θ)2

)

Maximizing the likelihood is equivalent to minimizing the sum of squared differences (z1−
θ)2 + (z2 − θ)2, which is convex as a function of θ. The derivative is 4θ− 2z1 − 2z2 and is
equal to 0 for

θ̂MLE =
z1 + z2

2

(b) Case (ii)
The joint density is given by:

g(x1, x2|θ) = π−3/2 exp{−(x1 + x2 − 2θ)2/4}
1 + (x1 − x2)2

To find the MLE, we maximize g(x1, x2|θ) with respect to θ. Notice that the denominator
1 + (z1 − z2)2 does not depend on θ. Thus, we only need to maximize the numerator:

Numerator ∝ exp

{
−(z1 + z2 − 2θ)2

4

}
This exponential is maximized when the exponent is zero (since the exponent is non-
positive):

(z1 + z2 − 2θ)2 = 0 =⇒ 2θ = z1 + z2 =⇒ θ̂MLE =
z1 + z2

2

Remark: Even though the joint distributions in (i) (independent Gaussian) and (ii)
(dependent, heavy-tailed Cauchy-like term) are very different, they yield the exact same
Maximum Likelihood Estimator for θ.

3. Bernoulli model
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(a) Show uniqueness.
The likelihood for n i.i.d. observations is L(θ) =

∏
i θ
xi(1 − θ)1−xi = θ

∑
xi(1 − θ)n−

∑
xi .

The log-likelihood is:

`(θ) =

(
n∑
i=1

xi

)
log θ +

(
n−

n∑
i=1

xi

)
log(1− θ)

The second derivative with respect to θ is:

`′′(θ) = −
∑
xi
θ2
− n−

∑
xi

(1− θ)2
< 0

Since xi ∈ {0, 1} and θ ∈ (0, 1), both terms are negative (assuming at least one 0 and
one 1 are observed, or treating boundary cases as limits). Thus, the function is strictly
concave, implying that any critical point found is a unique global maximum.

(b) Show θ̂(X) = Xn.
Setting the first derivative to zero:

`′(θ) =

∑
xi
θ
− n−

∑
xi

1− θ
= 0

(1− θ)
∑

xi = θ(n−
∑

xi)∑
xi − θ

∑
xi = nθ − θ

∑
xi∑

xi = nθ =⇒ θ̂ =
1

n

n∑
i=1

xi = Xn

4. Genetics

Let B denote the allele for Brown (dominant) and b denote Blue (recessive, denoted X and x
in the prompt). Genotypes: xx (blue), xX (brown), XX (brown). Frequencies: P (xx) = p2,
P (xX) = 2p(1− p), P (XX) = (1− p)2. Note: Total Brown freq = 1− p2.

(a) Expected proportion of heterozygotes among brown-eyed children of brown-eyed parents.
We are looking for P (Heterozygote child| Brown parents and Brown child) which is:

P (xX| Brown parents and Brown child) =
P ( Brown parents, Brown child with xX)

P ( Brown parents and Brown child)

=
P ( Brown parents, child with xX)

P ( Brown parents and Brown child)
,

using the fact that heterozygotes always have brown eyes.

The numerator is equal to:∑
Parent 1∈{xX,XX},
Parent 2∈{xX,XX}

P ( Parent 1, Parent 2, child with xX)

=
∑

Parent 1∈{xX,XX},
Parent 2∈{xX,XX}

P ( child with xX|Parent 1, Parent 2)P (Parent 1, Parent 2).
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If both parents are homozygote (resp. heterozygote), the above probability is 0 (resp.
1/2), and it is 1/2 in the last case. So the above gives

1

2
P (xX, XX)+

1

2
P (XX,xX)+

1

2
P (xX,xX) = 2p(1−p) ·(1−p)2 +

(2p(1− p))2

2
= 2p(1−p)2.

The denominator is equal to

P ( Brown parents, child with xX) + P ( Brown parents, child with XX).

Similarly, the second term is∑
Parent 1∈{xX,XX},
Parent 2∈{xX,XX}

P ( child with XX|Parent 1, Parent 2)P (Parent 1, Parent 2),

and If both parents are homozygote (resp. heterozygote), the above probability is 1 (resp.
1/2), and it is 1/2 in the last case, so the above is

1

2
P (xX, XX)+

1

2
P (XX,xX)+

1

2
P (xX,xX)+P (XX,XX) = 2p(1−p)2+(1−p)4 = (1+p2)(1−p)2.

In the end, we obtain
2p/(1 + p2).

(b) Posterior probability Judy is a heterozygote.
Let H be the event Judy is Heterozygous (xX) and D be the event Judy is Dominant
Homozygous (XX). Since Judy is the brown-eyed child of brown-eyed parents, we use the
result from (a) as her prior:

P (H) =
2p

1 + p2
, P (D) = 1− P (H) =

(1− p)2

1 + p2

Evidence E: She marries a heterozygote (xX) and has n brown-eyed children.
Likelihoods:

• If Judy is H (xX): Mating xX × xX. Prob of brown child is 3/4, since the only way
for the child to have blue eyes is for both parents to provide allele x, with probability
1/2.

P (E|H) = (3/4)n

• If Judy is D (XX): Mating XX × xX. All children are brown (XX or xX).

P (E|D) = 1n = 1

Posterior P (H|E):

P (H|E) =
P (E|H)P (H)

P (E|H)P (H) + P (E|D)P (D)

=
(3/4)n 2p

1+p2

(3/4)n 2p
1+p2

+ 1 · (1−p)2
1+p2

=
2p(3/4)n

2p(3/4)n + (1− p)2
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(c) Probability Judy’s first grandchild has blue eyes.
Let K be Judy’s child (one of the n brown children). Let G be the grandchild. For G to
be blue (xx), both parents must contribute x. Assume K marries a random person from
the population. The probability the partner contributes x is 1 if it is xx (with probability
p2) and 1/2 if it is xX (with probability 2p− 2p2), so it is p2 + p− p2 = p in total.

Now we need the probability K contributes x. Let πn = P (H|E) be Judy’s posterior from
(b).

• Case 1: Judy is D (XX). Then K is from XX × xX. K is XX or xX with prob 0.5
each. P (K passes x|Judy D) = 0.5× 0 + 0.5× 0.5 = 0.25.

• Case 2: Judy is H (xX). Then K is from xX × xX, but we know K is brown.
Among brown children of xX × xX, the genotypes are XX (1/3) and xX (2/3).
P (K passes x|Judy H) = (1/3)× 0 + (2/3)× 0.5 = 1/3.

Total prob K passes x: P (Kx) = πn(1/3) + (1− πn)(1/4).

Finally, P (G is blue) = P (Kx)× P (Partnerx) =
[
πn
3 + 1−πn

4

]
p.

5. Twins and Elvis Presley Let I be the event of Identical twins and F be Fraternal.

P (I) = 1/300, P (F ) = 1/125.

Event E: Elvis had a twin brother.
Note: We must condition on the fact that the birth was a twin birth.

P (I|Twins) =
P (I, Twins)

P (Twins)
=
P (I, Twins)

P (Twins)
=

P (I)

P (I) + P (F )
=

1/300

1/300 + 1/125
=

125

125 + 300
=

5

17
.

We also deduce that P (F |Twins) = 12
17 .

Now, let’s use the evidence that the second twin was a brother. Likelihood of observing Male-
Male twins (MM):

• If Identical (I): Sex is always same. Assuming 50/50 boys/girls, P (MM |I) = 1/2.

• If Fraternal (F ): Sexes are independent. P (MM |F ) = 1/2× 1/2 = 1/4.

Posterior probability that Elvis was an identical twin:

P (I|Twins, MM) =
P (MM |I) ∗ 5/17

P (MM |I) ∗ 5/17 + P (MM |F ) ∗ 12/17

(Using raw probabilities or conditional on twins cancels out, let’s use raw).

=
(1/2) ∗ 5

(1/2) ∗ 5 + (1/4) ∗ 12
=

5

5 + 6
=

5

11
.

So there is a 5/11 (approx 45.4%) chance Elvis was an identical twin.

6. Monty Hall

(a) Should the contestant switch?
Yes. Note C the event that you chose the correct door: P (C) = 1/3 (there are three
doors). Note O the event that the host revealed the door he chose. Given C, the host
had the choice between the last two doors to show you what is behind, so P (O|C) = 1/2.
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Given Cc, the host could not reveal your own door or the one hiding the big prize, so it
did not have a choice and had to reveal the door he chose: P (O|Cc) = 1. Therefore,

P (C|O) =
P (C)P (O|C)

P (C)P (O|C) + P (Cc)P (O|Cc)
=

1
3 ·

1
2

1
3 ·

1
2 + 2

3 · 1
= 1/3.

Therefore, there is probability 2/3 the last door is the correct one.

(b) Calculate probabilities.

• Strategy Stay: You win only if your initial choice was correct. Since there are 3
boxes and 1 prize, P (Win) = 1/3.

• Strategy Switch: You win if your initial choice was wrong. (If you pick a losing
box, Monty reveals the other loser, leaving the winner as the switch option). Since
there are 2 losing boxes, P (Win) = 2/3.

(c) Evil Monty Variant
Let W be the event ”Original choice is Winner” (P (W ) = 1/3) and L be ”Original choice
is Loser” (P (L) = 2/3). Let O be the event ”Monty Offers a switch”.

Rules:

• If W , Monty offers switch with prob p: P (O|W ) = p.

• If L, Monty always offers switch: P (O|L) = 1.

We want to know if we should switch given we are offered the chance. This is equivalent
to comparing P (L|O) (Switch wins) vs P (W |O) (Stay wins).

P (L|O) =
P (O|L)P (L)

P (O|L)P (L) + P (O|W )P (W )
=

1 · (2/3)

1 · (2/3) + p · (1/3)

P (L|O) =
2/3

2/3 + p/3
=

2

2 + p

If p < 1, the probability of winning by switching (2/(2 + p)) is greater than the standard
2/3. If p = 0, switching guarantees a win (P = 1). Even if p = 1 (standard game), prob
is 2/3. Since p ∈ [0, 1], P (L|O) ≥ 2/3.

Conclusion: You should still switch. In fact, the ”Evil” behavior makes switching even
more advantageous because being offered a switch is now evidence suggesting you likely
picked a losing box initially (since he might not have offered it if you had picked the
winner).
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