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Decision Theory Framework

Loss Functions and Risk

® Frequentist Risk vs. Bayesian Risk
® Posterior Risk

Bayes Estimators

Comparison of Estimators
® Admissibility
® Minimaxity

Outline



Introduction and Motivation

In a statistical experiment, a given prior distribution corresponds to a posterior distribution.
From this posterior, we can deduce several estimators (mean, median, mode, etc.).

Questions:
¢ Which one should we choose in practice?
e What criteria can we state for this choice?

I"

® More generally, are there "optimal" estimators among all possible estimators?

To answer this, we must define notions of Risk and Loss Function. We will study three classic
criteria: Admissibility, Bayes Risk, and Minimax Risk.



The Loss Function

Consider an experiment (X, P) with P = {Py,6 € ©}.

Definition:
A loss function ¢ is a measurable function £ : © x © — R, such that:

V0,0 €O, 0(0,0)=0 — =20

Relaxed Definition: Sometimes we only require V0,6 € ©,0 = 0’ = £(6,0") = 0.

® This relaxed version allows including the classification loss.



Examples of Loss Functions

e Quadratic Loss: If © c R:
06,0') = (0 —0')?

More generally, in © c RY:

d
066" =10 —¢'|7 = > (6: — 6))?

i=1

¢ Absolute Loss: If © c R:
00,0) =10 —¢|



Distance-based Loss Functions

For arbitrary ©, we can define loss based on distances between probability distributions Py and
PQ/.

* Total Variation Loss: ¢(0,60") = drv(Py, Po') where

drv(P, Q) = sup|P(A) — Q(A)]
Ae€

* Hellinger Loss: ¢(0,0") = h(Py, Py:), where
h(P,Q)? = J (\/p(X) — Vq(x))2 du(x), p,q densities of P, Q
E

/\ Note: These define valid loss functions (where £(0,0') =0 <= 0 = 0') only if the model
is identifiable.



Example: Classification Loss

Suppose © = ©g U ©1 with ©g n ©1 = .
We define the classification loss function by:

Lc(0,0") = Lgeo,,0rco, + Loco,,0co,

® [c(6,0) =0if and only if  and 6 are in the same region (©g or ©1).

e This is the natural loss used when constructing a test to answer a binary question about 6
(cf. Lecture 4).



The Risk Function

Definition
The risk function (or simply the risk) of an estimator T for the loss function ¢ is the map
R(, T) : © —» R defined by:

0— R(0, T)=Ey[t(0, T(X))] = L £(0, T(x))dPy(x).

The risk at point 6 is the average loss of T at 6 (also called pointwise risk), under distribution
Py.

Risk functions allow us to compare estimators. However, defining a "best possible estimator" is
delicate.



Is there a "Best" Estimator?

Consider the Gaussian model P = {N(#,1)®" § € R} and the quadratic loss.

e Estimator 1: The constant estimator T = 6.

e Estimator 2: The sample mean T = X,

Comparison:

® At 0 = 0y, the constant estimator has zero risk, making it better than any other
estimator at that specific point.

* However, for all § such that (§ — 6g)? > 1/n, we prefer X, (which has constant risk 1/n).

— Usually, no estimator is uniformly better than all others for all 6.



Critique of the Frequentist Risk

The definition of the risk function R(6, ) = Eg[¢(6,4(X))] is not without issues:

¢ Frequentist Assumption: It tacitly assumes that the problem will be encountered many
times so that a frequency-based evaluation makes sense:

R(6,0) ~ average cost over repetitions.

* Lack of Total Ordering: As we saw earlier (e.g., constant estimator vs. sample mean),
this criterion typically does not lead to a total order on the set of estimators.



Admissibility

Definition:
An estimator T is inadmissible if there exists an estimator Ty such that:
V9e®, R(O,T1)<R(0,T)
and 391 € @7 R(917 Tl) < R(91, T)

An estimator T is admissible if it is not inadmissible. In other words, for any other estimator
Ty, if T1 beats T somewhere, T must beat T; somewhere else.



Strategies for Optimality

Since minimizing risk pointwise everywhere is impossible, we need global criteria:

@ Bayesian Risk:
® Depends on a chosen prior.
® Gives a possible answer to "optimal estimator".
® Drawback: The answer is not "universal" (depends on the prior).

® Minimax Risk:
® More universal (independent of a prior).
® Drawback: Pessimistic approach, we seek an estimator T that minimizes the worst possible
risk

infsupR(6, T)
T oeo



Bayes Risk

Definition
For an estimator T and a prior distribution 7, the Bayes Risk is defined as:

Rg(m, T) = E[£(0, T(X))] (in the Bayesian model)
= J J 000, T(x))dPy(x)dm(0)
o Je

= J R(6, T)dn(0) = E[R(0, T)] (expectation over the prior)
e

Alternatively, by conditioning (law of total expectation):

E[¢(0, T(X))] = E[E[£(0, T(X)) | 0]] = E[R(0, T)].



Bayes Estimator

Definition
An estimator T* is called a Bayes estimator for the prior 7 if:

RB(Tr7 T*) = Ir_;_f RB(W7 T)a

where the infimum is taken over all possible estimators T.

We denote the minimum value as Rg(7) = infr Rg(m, T), which is called the Bayes risk for
the prior 7.

Interpretation: A Bayes estimator minimizes the "average risk" weighted by the prior belief 7
on ©.



Example: Classification Loss

Associated Frequentist Risk:

Pe(T(X)e©y) if6e©y (Typel Error)

R(6,T) = Eg[£(6, T(X))] = {PQ(T(X) € ©p) otherwise (Type Il Error)

The Bayes risk associated with any prior 7 and the classification loss is:

J Py(T(X) € ©1)m(0)do + J Py(T(X) € ©g)(6)db
©o ©;



Example: The Gaussian Model

Setting:
* Model: P = {N(0,1)®",0 € R}.
* Prior: m = N(0,1).
* Loss: Quadratic loss £(0,0") = (0 — 0").

We calculate the Bayes risk for 7 for the following three estimators:

_ n -
T]_(X) = 07 TZ(X) = X,,, T3(X) = n+ 1Xn




Bayes Risk for T; and T,

1. The Constant Estimator T; = 0:

Re(m, Th) L R(0, Ty)d=(6)

= J Eo[(0 — 0)%]dn(0) = J 62dm(f) = 1. (Variance of prior)
(S] S}

2. The Sample Mean T, = Xy
Recall that under Py, X, ~ N'(6,1/n). Thus, R(8, T2) = 1/n.

RB(’]T, TQ) = f %dﬂ(ﬁ) = %

o



Bayes Risk for T3

3. The Shrinkage Estimator Tz = —= Xp:
First, compute the pointwise risk R( T 3) (Bias-Variance decomposition):

RaR (G0 R (CELRNE)

2 2
- < n ) Eo[(X, — 0)?] + < o ) (Cross term is 0)
—_—

n+1 n+1

1/n
n N 62
(n+1)2  (n+1)%

Now, integrate over the prior 7 (recall {§2dn = 1):

n 1 n+1 1
Rg(m, T3) = 2 = = :
5(m, T3) n+ 12 (n+ 12 LH dr(6) (n+12 n+1



Comparison of Estimators

We have the following Bayes risks for prior 7 = A/(0,1):
L4 Tl =0 = RB =1

° T2=)_<,, - RBI%

° __n_¥ — 1
T3 n+1X" g RB n+1

For all n > 2:
RB(ﬂ', T3) < RB(’JT7 T2) < RB(’]T, Tl)



Maximal and Minimax Risk

Before constructing Bayes estimators, let's briefly define the alternative criterion.

Definition
The maximal risk of an estimator T is:

Rmax(T) =supR(6, T).
6e®©

The minimax risk Ry is:

Ry = inf Ryax(T) = infsupR(6, T) (infimum over all estimators T)
T T geo

An estimator T* is minimax if Rnax(T*) = Rpy.

Interpretation: Minimax seeks the "least worst" estimator (pessimistic), while Bayes seeks the
best "average" estimator.



Posterior Risk

Instead of minimizing the global Bayes risk directly, we can minimize a conditional quantity.

Definition
Let ¢ be a loss function and 7 a prior. The posterior risk p(m, T | X) is defined as:

p(m, T | X) = E[6(0, T(X)) | X] = Lz(a T(X))dr (0 | X).

* Unlike the Bayes risk (which is a scalar), the posterior risk is a random variable depending
on X.

® |t represents the expected loss after observing the data.



Minimizing Posterior Risk

Theorem
Given a loss function ¢ and a prior 7, if an element T*(X) satisfies:

T*(X) € arg mTin p(m, T | X)

(if it exists), then T* is a Bayes estimator for 7.

Why is this useful?

® |t simplifies the problem: instead of minimizing an integral over both X and ©, we
minimize the integral over © for each fixed X.

f f 00, T(x))dPy(x)d7(8) vs. J 00, T(X))dr (0 | X)
o JE €]

® We simply find the estimator that minimizes the loss pointwise for every x.



Bayes Estimator: Quadratic Loss

Consider the quadratic loss £(0,0') = (0 — 6')? with © < R.

Proposition
If §o 02dm () < oo, the Bayes estimator for quadratic loss is the Posterior Mean:

T*(X) — E[0 | X] — f@ 0dr(0 | X).

Proof Sketch: The problem reduces to finding a constant a that minimizes E[( — a)? | X].
This is a classic result: the minimum of f(a) = E[(Z — a)?] is achieved at a = E[Z]. Here, Z
is 0 distributed according to the posterior.



Calculating Bayes Risk (Quadratic Case)

Remark
For quadratic loss, the Bayes risk Rg(7) is the expected posterior variance:

Rg(r) = E[Var(d | X)].

Two ways to compute Bayes Risk:
@ Compute the risk function § — R(#, T*) and integrate against the prior 7.
® (Often simpler) Compute the posterior variance vx = Var( | X) and take its expectation.

In the Gaussian model, the posterior variance often does not depend on X, making the
calculation trivial.



Example: Gaussian Model Revisited
Model: P = {N(6,1)®"}, Prior 7 = N(0,1).

We saw in the previous lecture that the posterior distribution is:

Tr(-X)—N(n)_(n ! )

n+1 n+1

From the proposition:
® The Bayes estimator is the posterior mean:
n

Empq:nJrl

X,

® This confirms our earlier "guess" (T3).
® The Bayes risk is the expectation of the posterior variance:

Rel) = E| 57| = 5

n+1 n+1




Bayes Estimator: Absolute Loss

Consider the absolute loss £(6,0') = |0 — 6’| with © < R.

Proposition

Let £ be the absolute value loss. The Bayes estimator is the Posterior Median:
T*(X) = Median(r (- | X)).

Formally, T*(X) = FOT;(I/Q) (generalized inverse of posterior CDF).

Intuition: Just as the mean minimizes mean squared error (L), the median minimizes mean
absolute error (L1).



Relationship between Bayes and Minimax Risk

We begin with a fundamental inequality relating the two major optimal risks.

Theorem

For any prior distribution 7 on © and any loss function, the Bayes risk always lower bounds the
minimax risk:

Rg(m) < Rum.

Proof Idea: Recall that Rg(7) = infr {R(, T)dn(6). Since 7(©) = 1:

J R(0, T)dn(8) < supR(0, T)J dm(f) =supR(4, T).
(C] 0c© (€] (2SS

Taking the infimum over T on both sides yields the result.



Admissibility: Sufficient Conditions

Definition
Two estimators T and T’ are equivalent if their risk functions are identical:

¥9e®©, RO, T)=R(O,T).

Theorem (Unique and Bayes — Admissible)

Let T* be a Bayes estimator for prior 7. If T* is unique (up to equivalence), then T* is
admissible.

Proof Sketch: If T* were inadmissible, there would exist a T with better or equal risk
everywhere (and strictly better somewhere). Integrating this inequality against = would imply
Rg(m, T) < Rg(m, T*). Since T* is Bayes, equality must hold, and by uniqueness, T must be
equivalent to T*, contradicting strict inequality.



Admissibility in the Gaussian Model

Quadratic Loss: For the Gaussian model P = {N(0,52)®"}, we obtain that Bayes estimators
(for normal priors) are of the form (see Problem set 1 and Lecture 2):

n

m)_(,, + n—/f\—i)\u’ A >0, pueR (Affine transformations),

T(X) =
with Bayesian risk 02/(n + \).

Result: It can be shown that any estimator of the form:
aX,+ B, with ae(0,1)and e R

is admissible for the quadratic loss.

Note: The sample mean X, (where o = 1 or A\ = 0) is the limit of these estimators but
requires a different tool (limit of priors) to analyze its minimaxity.



Finding Minimax Estimators: Constant Risk

A powerful method to identify minimax estimators is to look for those with constant risk.

Proposition
If an estimator T is admissible and has constant risk (i.e., 8 — R(6, T) is constant), then T
is minimax.

Theorem
If T is a Bayes estimator for a prior 7 and has constant risk, then T is minimax.

Intuition: A Bayes estimator minimizes the average risk. If the risk is flat (constant), the
average is equal to the maximum. Thus, it minimizes the maximum risk.



The Limiting Bayes Method

Sometimes the minimax estimator is not a Bayes estimator for any proper prior (e.g., X, in the
Gaussian model). We use sequences of priors.

Theorem
If there exists a sequence of priors (7 )k>1 such that:

RmaX(T) = lim RB(ﬂ'k),

k—0

then T is minimax.

Proof: We know Rg(mx) < Ry < Riax(T). Taking the limit:
limRg(mk) < Ry < Rmax(T).

If the ends are equal, then R« (T) = Ry.



Application: Minimaxity of X,

Setting: Gaussian Model N(6,1)®" with quadratic loss.

® Estimator: Consider T = X,,.
® Maximal Risk: R(0, X,) = 1/n for all §. Thus, Rpax(X,,) = 1/n.
©® Sequence of Priors: Let 7,2 = N(0,02).

@ Bayes Risk: We calculated previously that Rg(7,2) =

n+o—2"

Conclusion: )
lim Rp(my2) = lim ——— = = = Rpax(X,).

02w 2»won+0-2 n

By the Theorem, X, is a minimax estimator.



Bayes Estimators under Frequentist Criteria

Proposition
If a Bayes estimator, constructed from a prior 7(0), is associated with a strictly convex cost
function, then it is admissible.

A Frequentist Perspective:
e Criteria such as minimaxity and admissibility are fundamentally frequentist (as they are
built from the frequentist risk).
® According to these standards, Bayesian estimators perform better than, or at least as well
as, standard frequentist estimators:

® Their minimax risk is often equal or smaller.
® They are often all admissible (provided the Bayes risk is well-defined).



