

Lecture 3: Elements of Decision Theory

Thibault Randrianarisoa

UTSC

January 29, 2026

Outline

- Decision Theory Framework
- Loss Functions and Risk
 - Frequentist Risk vs. Bayesian Risk
 - Posterior Risk
- Bayes Estimators
- Comparison of Estimators
 - Admissibility
 - Minimaxity

Introduction and Motivation

In a statistical experiment, a given prior distribution corresponds to a posterior distribution. From this posterior, we can deduce several estimators (mean, median, mode, etc.).

Questions:

- Which one should we choose in practice?
- What criteria can we state for this choice?
- More generally, are there "**optimal" estimators** among all possible estimators?

To answer this, we must define notions of **Risk** and **Loss Function**. We will study three classic criteria: **Admissibility**, **Bayes Risk**, and **Minimax Risk**.

The Loss Function

Consider an experiment $(\mathbf{X}, \mathcal{P})$ with $\mathcal{P} = \{P_\theta, \theta \in \Theta\}$.

Definition:

A **loss function** ℓ is a measurable function $\ell : \Theta \times \Theta \rightarrow \mathbb{R}_+$ such that:

$$\forall \theta, \theta' \in \Theta, \quad \ell(\theta, \theta') = 0 \iff \theta = \theta'.$$

Relaxed Definition: Sometimes we only require $\forall \theta, \theta' \in \Theta, \theta = \theta' \Rightarrow \ell(\theta, \theta') = 0$.

- This relaxed version allows including the classification loss.

Examples of Loss Functions

- **Quadratic Loss:** If $\Theta \subset \mathbb{R}$:

$$\ell(\theta, \theta') = (\theta - \theta')^2$$

More generally, in $\Theta \subset \mathbb{R}^d$:

$$\ell(\theta, \theta') = \|\theta - \theta'\|^2 = \sum_{i=1}^d (\theta_i - \theta'_i)^2$$

- **Absolute Loss:** If $\Theta \subset \mathbb{R}$:

$$\ell(\theta, \theta') = |\theta - \theta'|$$

Distance-based Loss Functions

For arbitrary Θ , we can define loss based on distances between probability distributions P_θ and $P_{\theta'}$.

- **Total Variation Loss:** $\ell(\theta, \theta') = d_{\text{TV}}(P_\theta, P_{\theta'})$ where

$$d_{\text{TV}}(P, Q) = \sup_{A \in \mathcal{E}} |P(A) - Q(A)|$$

- **Hellinger Loss:** $\ell(\theta, \theta') = h(P_\theta, P_{\theta'})$, where

$$h(P, Q)^2 = \int_E \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^2 d\mu(x), \quad p, q \text{ densities of } P, Q$$

⚠ Note: These define valid loss functions (where $\ell(\theta, \theta') = 0 \iff \theta = \theta'$) only if the model is **identifiable**.

Example: Classification Loss

Suppose $\Theta = \Theta_0 \cup \Theta_1$ with $\Theta_0 \cap \Theta_1 = \emptyset$.

We define the **classification loss function** by:

$$L_C(\theta, \theta') = \mathbb{1}_{\theta \in \Theta_0, \theta' \in \Theta_1} + \mathbb{1}_{\theta \in \Theta_1, \theta' \in \Theta_0}$$

- $L_C(\theta, \theta') = 0$ if and only if θ and θ' are in the same region (Θ_0 or Θ_1).
- This is the natural loss used when constructing a test to answer a binary question about θ (cf. Lecture 4).

The Risk Function

Definition

The **risk function** (or simply the risk) of an estimator T for the loss function ℓ is the map $\mathbf{R}(\cdot, T) : \Theta \rightarrow \mathbb{R}_+$ defined by:

$$\theta \longmapsto \mathbf{R}(\theta, T) = \mathbf{E}_\theta[\ell(\theta, T(\mathbf{X}))] = \int_E \ell(\theta, T(x)) dP_\theta(x).$$

The risk at point θ is the **average loss** of T at θ (also called *pointwise risk*), under distribution P_θ .

Risk functions allow us to **compare** estimators. However, defining a "best possible estimator" is **delicate**.

Is there a "Best" Estimator?

Consider the Gaussian model $\mathcal{P} = \{\mathcal{N}(\theta, 1)^{\otimes n}, \theta \in \mathbb{R}\}$ and the quadratic loss.

- **Estimator 1:** The constant estimator $T = \theta_0$.
- **Estimator 2:** The sample mean $T = \bar{X}_n$.

Comparison:

- At $\theta = \theta_0$, the constant estimator has **zero risk**, making it better than any other estimator at that specific point.
- However, for all θ such that $(\theta - \theta_0)^2 > 1/n$, we prefer \bar{X}_n (which has constant risk $1/n$).

→ Usually, no estimator is uniformly better than all others for all θ .

Critique of the Frequentist Risk

The definition of the risk function $\mathbf{R}(\theta, \delta) = \mathbf{E}_\theta[\ell(\theta, \delta(\mathbf{X}))]$ is not without issues:

- **Frequentist Assumption:** It tacitly assumes that the problem will be encountered many times so that a frequency-based evaluation makes sense:

$$\mathbf{R}(\theta, \delta) \simeq \text{average cost over repetitions.}$$

- **Lack of Total Ordering:** As we saw earlier (e.g., constant estimator vs. sample mean), this criterion typically does not lead to a *total order* on the set of estimators.

Definition:

An estimator T is **inadmissible** if there exists an estimator T_1 such that:

$$\begin{aligned} \forall \theta \in \Theta, \quad \mathbf{R}(\theta, T_1) &\leq \mathbf{R}(\theta, T) \\ \text{and } \exists \theta_1 \in \Theta, \quad \mathbf{R}(\theta_1, T_1) &< \mathbf{R}(\theta_1, T). \end{aligned}$$

An estimator T is **admissible** if it is not inadmissible. In other words, for any other estimator T_1 , if T_1 beats T somewhere, T must beat T_1 somewhere else.

Strategies for Optimality

Since minimizing risk pointwise everywhere is impossible, we need global criteria:

① Bayesian Risk:

- Depends on a chosen prior.
- Gives a possible answer to "optimal estimator".
- *Drawback:* The answer is not "universal" (depends on the prior).

② Minimax Risk:

- More universal (independent of a prior).
- *Drawback:* Pessimistic approach, we seek an estimator T that minimizes the **worst possible risk**

$$\inf_T \sup_{\theta \in \Theta} \mathbf{R}(\theta, T)$$

Definition

For an estimator T and a prior distribution π , the **Bayes Risk** is defined as:

$$\begin{aligned}\mathbf{R}_B(\pi, T) &= \mathbf{E}[\ell(\theta, T(\mathbf{X}))] \quad \text{(in the Bayesian model)} \\ &= \int_{\Theta} \int_E \ell(\theta, T(x)) dP_{\theta}(x) d\pi(\theta) \\ &= \int_{\Theta} \mathbf{R}(\theta, T) d\pi(\theta) = \mathbf{E}[\mathbf{R}(\theta, T)] \quad \text{(expectation over the prior)}\end{aligned}$$

Alternatively, by conditioning (*law of total expectation*):

$$\mathbf{E}[\ell(\theta, T(\mathbf{X}))] = \mathbf{E}[\mathbf{E}[\ell(\theta, T(\mathbf{X})) \mid \theta]] = \mathbf{E}[\mathbf{R}(\theta, T)].$$

Definition

An estimator T^* is called a **Bayes estimator** for the prior π if:

$$\mathbf{R}_B(\pi, T^*) = \inf_T \mathbf{R}_B(\pi, T),$$

where the infimum is taken over all possible estimators T .

We denote the minimum value as $\mathbf{R}_B(\pi) = \inf_T \mathbf{R}_B(\pi, T)$, which is called the **Bayes risk** for the prior π .

Interpretation: A Bayes estimator minimizes the "average risk" weighted by the prior belief π on Θ .

Example: Classification Loss

Associated Frequentist Risk:

$$R(\theta, T) = E_{\theta}[\ell(\theta, T(\mathbf{X}))] = \begin{cases} P_{\theta}(T(\mathbf{X}) \in \Theta_1) & \text{if } \theta \in \Theta_0 \quad (\text{Type I Error}) \\ P_{\theta}(T(\mathbf{X}) \in \Theta_0) & \text{otherwise} \quad (\text{Type II Error}) \end{cases}$$

The Bayes risk associated with any prior π and the classification loss is:

$$\int_{\Theta_0} P_{\theta}(T(\mathbf{X}) \in \Theta_1) \pi(\theta) d\theta + \int_{\Theta_1} P_{\theta}(T(\mathbf{X}) \in \Theta_0) \pi(\theta) d\theta$$

Example: The Gaussian Model

Setting:

- *Model:* $\mathcal{P} = \{\mathcal{N}(\theta, 1)^{\otimes n}, \theta \in \mathbb{R}\}.$
- *Prior:* $\pi = \mathcal{N}(0, 1).$
- *Loss:* Quadratic loss $\ell(\theta, \theta') = (\theta - \theta')^2.$

We calculate the Bayes risk for π for the following three estimators:

$$T_1(\mathbf{X}) = 0, \quad T_2(\mathbf{X}) = \bar{X}_n, \quad T_3(\mathbf{X}) = \frac{n}{n+1} \bar{X}_n.$$

Bayes Risk for T_1 and T_2

1. *The Constant Estimator $T_1 = 0$:*

$$\begin{aligned}\mathbf{R}_B(\pi, T_1) &= \int_{\Theta} \mathbf{R}(\theta, T_1) d\pi(\theta) \\ &= \int_{\Theta} \mathbf{E}_{\theta}[(\theta - 0)^2] d\pi(\theta) = \int_{\Theta} \theta^2 d\pi(\theta) = 1. \quad (\text{Variance of prior})\end{aligned}$$

2. *The Sample Mean $T_2 = \bar{X}_n$:*

Recall that under P_{θ} , $\bar{X}_n \sim \mathcal{N}(\theta, 1/n)$. Thus, $\mathbf{R}(\theta, T_2) = 1/n$.

$$\mathbf{R}_B(\pi, T_2) = \int_{\Theta} \frac{1}{n} d\pi(\theta) = \frac{1}{n}.$$

Bayes Risk for T_3

3. The Shrinkage Estimator $T_3 = \frac{n}{n+1}\bar{X}_n$:

First, compute the pointwise risk $\mathbf{R}(\theta, T_3)$ (Bias-Variance decomposition):

$$\begin{aligned}\mathbf{R}(\theta, T_3) &= \mathbf{E}_\theta \left[\left(\frac{n}{n+1}\bar{X}_n - \theta \right)^2 \right] = \mathbf{E}_\theta \left[\left(\frac{n}{n+1}(\bar{X}_n - \theta) - \frac{\theta}{n+1} \right)^2 \right] \\ &= \left(\frac{n}{n+1} \right)^2 \underbrace{\mathbf{E}_\theta[(\bar{X}_n - \theta)^2]}_{1/n} + \left(\frac{\theta}{n+1} \right)^2 \quad (\text{Cross term is 0}) \\ &= \frac{n}{(n+1)^2} + \frac{\theta^2}{(n+1)^2}.\end{aligned}$$

Now, integrate over the prior π (recall $\int \theta^2 d\pi = 1$):

$$\mathbf{R}_B(\pi, T_3) = \frac{n}{(n+1)^2} + \frac{1}{(n+1)^2} \int_{\Theta} \theta^2 d\pi(\theta) = \frac{n+1}{(n+1)^2} = \frac{1}{n+1}.$$

Comparison of Estimators

We have the following Bayes risks for prior $\pi = \mathcal{N}(0, 1)$:

- $T_1 = 0 \implies \mathbf{R}_B = 1$
- $T_2 = \bar{X}_n \implies \mathbf{R}_B = \frac{1}{n}$
- $T_3 = \frac{n}{n+1}\bar{X}_n \implies \mathbf{R}_B = \frac{1}{n+1}$

For all $n \geq 2$:

$$\mathbf{R}_B(\pi, T_3) < \mathbf{R}_B(\pi, T_2) < \mathbf{R}_B(\pi, T_1).$$

Maximal and Minimax Risk

Before constructing Bayes estimators, let's briefly define the alternative criterion.

Definition

The **maximal risk** of an estimator T is:

$$\mathbf{R}_{\max}(T) = \sup_{\theta \in \Theta} \mathbf{R}(\theta, T).$$

The **minimax risk** \mathbf{R}_M is:

$$\mathbf{R}_M = \inf_T \mathbf{R}_{\max}(T) = \inf_T \sup_{\theta \in \Theta} \mathbf{R}(\theta, T) \quad (\text{infimum over all estimators } T)$$

An estimator T^* is **minimax** if $\mathbf{R}_{\max}(T^*) = \mathbf{R}_M$.

Interpretation: Minimax seeks the "least worst" estimator (*pessimistic*), while Bayes seeks the best "average" estimator.

Posterior Risk

Instead of minimizing the global Bayes risk directly, we can minimize a conditional quantity.

Definition

Let ℓ be a loss function and π a prior. The **posterior risk** $\rho(\pi, T | \mathbf{X})$ is defined as:

$$\rho(\pi, T | \mathbf{X}) = \mathbf{E}[\ell(\theta, T(\mathbf{X})) | \mathbf{X}] = \int_{\Theta} \ell(\theta, T(\mathbf{X})) d\pi(\theta | \mathbf{X}).$$

- Unlike the Bayes risk (which is a scalar), the posterior risk is a **random variable** depending on \mathbf{X} .
- It represents the expected loss **after observing the data**.

Minimizing Posterior Risk

Theorem

Given a loss function ℓ and a prior π , if an element $T^*(\mathbf{X})$ satisfies:

$$T^*(\mathbf{X}) \in \arg \min_T \rho(\pi, T | \mathbf{X})$$

(if it exists), then T^* is a **Bayes estimator** for π .

Why is this useful?

- It simplifies the problem: instead of minimizing an integral over both \mathcal{X} and Θ , we minimize the integral over Θ for each fixed \mathbf{X} .

$$\int_{\Theta} \int_{\mathcal{X}} \ell(\theta, T(x)) dP_{\theta}(x) d\pi(\theta) \text{ vs. } \int_{\Theta} \ell(\theta, T(\mathbf{X})) d\pi(\theta | \mathbf{X})$$

- We simply find the estimator that minimizes the loss **pointwise for every x** .

Bayes Estimator: Quadratic Loss

Consider the quadratic loss $\ell(\theta, \theta') = (\theta - \theta')^2$ with $\Theta \subset \mathbb{R}$.

Proposition

If $\int_{\Theta} \theta^2 d\pi(\theta) < \infty$, the Bayes estimator for quadratic loss is the **Posterior Mean**:

$$T^*(\mathbf{X}) = \mathbf{E}[\theta \mid \mathbf{X}] = \int_{\Theta} \theta d\pi(\theta \mid \mathbf{X}).$$

Proof Sketch: The problem reduces to finding a constant a that minimizes $\mathbf{E}[(\theta - a)^2 \mid \mathbf{X}]$. This is a classic result: the minimum of $f(a) = \mathbf{E}[(Z - a)^2]$ is achieved at $a = \mathbf{E}[Z]$. Here, Z is θ distributed according to the posterior.

Calculating Bayes Risk (Quadratic Case)

Remark

For quadratic loss, the Bayes risk $\mathbf{R}_B(\pi)$ is the **expected posterior variance**:

$$\mathbf{R}_B(\pi) = \mathbf{E}[\text{Var}(\theta | \mathbf{X})].$$

Two ways to compute Bayes Risk:

- ① Compute the risk function $\theta \mapsto \mathbf{R}(\theta, T^*)$ and integrate against the prior π .
- ② (Often simpler) Compute the posterior variance $v_{\mathbf{X}} = \text{Var}(\theta | \mathbf{X})$ and take its expectation.

In the Gaussian model, the posterior variance often *does not depend on \mathbf{X}* , making the calculation trivial.

Example: Gaussian Model Revisited

Model: $\mathcal{P} = \{\mathcal{N}(\theta, 1)^{\otimes n}\}$, Prior $\pi = \mathcal{N}(0, 1)$.

We saw in the previous lecture that the posterior distribution is:

$$\pi(\cdot | \mathbf{X}) = \mathcal{N}\left(\frac{n\bar{X}_n}{n+1}, \frac{1}{n+1}\right).$$

From the proposition:

- The Bayes estimator is the posterior mean:

$$\mathbf{E}[\theta | \mathbf{X}] = \frac{n}{n+1}\bar{X}_n.$$

- This confirms our earlier "guess" (T_3).
- The Bayes risk is the expectation of the posterior variance:

$$\mathbf{R}_B(\pi) = \mathbf{E}\left[\frac{1}{n+1}\right] = \frac{1}{n+1}.$$

Bayes Estimator: Absolute Loss

Consider the absolute loss $\ell(\theta, \theta') = |\theta - \theta'|$ with $\Theta \subset \mathbb{R}$.

Proposition

Let ℓ be the absolute value loss. The Bayes estimator is the **Posterior Median**:

$$T^*(\mathbf{X}) = \text{Median}(\pi(\cdot | \mathbf{X})).$$

Formally, $T^*(\mathbf{X}) = F_{\theta|\mathbf{X}}^{-1}(1/2)$ (generalized inverse of posterior CDF).

Intuition: Just as the mean minimizes mean squared error (L_2), the median minimizes mean absolute error (L_1).

Relationship between Bayes and Minimax Risk

We begin with a fundamental inequality relating the two major optimal risks.

Theorem

For any prior distribution π on Θ and any loss function, the Bayes risk always lower bounds the minimax risk:

$$\mathbf{R}_B(\pi) \leq \mathbf{R}_M.$$

Proof Idea: Recall that $\mathbf{R}_B(\pi) = \inf_T \int \mathbf{R}(\theta, T) d\pi(\theta)$. Since $\pi(\Theta) = 1$:

$$\int_{\Theta} \mathbf{R}(\theta, T) d\pi(\theta) \leq \sup_{\theta \in \Theta} \mathbf{R}(\theta, T) \int_{\Theta} d\pi(\theta) = \sup_{\theta \in \Theta} \mathbf{R}(\theta, T).$$

Taking the infimum over T on both sides yields the result.

Usage: This is often used to lower bound the minimax risk by finding a "least favorable" prior.

Admissibility: Sufficient Conditions

Definition

Two estimators T and T' are equivalent if their risk functions are identical:

$$\forall \theta \in \Theta, \quad \mathbf{R}(\theta, T) = \mathbf{R}(\theta, T').$$

Theorem (Unique and Bayes \implies Admissible)

Let T^* be a Bayes estimator for prior π . If T^* is unique (up to equivalence), then T^* is admissible.

Proof Sketch: If T^* were inadmissible, there would exist a T with better or equal risk everywhere (and strictly better somewhere). Integrating this inequality against π would imply $\mathbf{R}_B(\pi, T) \leq \mathbf{R}_B(\pi, T^*)$. Since T^* is Bayes, equality must hold, and by uniqueness, T must be equivalent to T^* , contradicting strict inequality.

Admissibility in the Gaussian Model

Quadratic Loss: For the Gaussian model $\mathcal{P} = \{\mathcal{N}(\theta, \sigma^2)^{\otimes n}\}$, we obtain that Bayes estimators (for normal priors) are of the form (see Problem set 1 and Lecture 2):

$$T(\mathbf{X}) = \frac{n}{n + \lambda} \bar{X}_n + \frac{\lambda}{n + \lambda} \mu, \quad \lambda > 0, \mu \in \mathbb{R} \quad (\text{Affine transformations}),$$

with Bayesian risk $\sigma^2/(n + \lambda)$.

Result: It can be shown that any estimator of the form:

$$\alpha \bar{X}_n + \beta, \quad \text{with } \alpha \in (0, 1) \text{ and } \beta \in \mathbb{R}$$

is **admissible** for the quadratic loss.

Note: The sample mean \bar{X}_n (where $\alpha = 1$ or $\lambda = 0$) is the limit of these estimators but requires a different tool (limit of priors) to analyze its minimaxity.

Finding Minimax Estimators: Constant Risk

A powerful method to identify minimax estimators is to look for those with **constant risk**.

Proposition

If an estimator T is **admissible** and has **constant risk** (i.e., $\theta \mapsto \mathbf{R}(\theta, T)$ is constant), then T is **minimax**.

Theorem

If T is a **Bayes estimator** for a prior π and has **constant risk**, then T is **minimax**.

Intuition: A Bayes estimator minimizes the *average* risk. If the risk is flat (constant), the average is equal to the maximum. Thus, it minimizes the maximum risk.

The Limiting Bayes Method

Sometimes the minimax estimator is not a Bayes estimator for any proper prior (e.g., \bar{X}_n in the Gaussian model). We use sequences of priors.

Theorem

If there exists a sequence of priors $(\pi_k)_{k \geq 1}$ such that:

$$\mathbf{R}_{\max}(T) = \lim_{k \rightarrow \infty} \mathbf{R}_B(\pi_k),$$

then T is **minimax**.

Proof: We know $\mathbf{R}_B(\pi_k) \leq \mathbf{R}_M \leq \mathbf{R}_{\max}(T)$. Taking the limit:

$$\lim \mathbf{R}_B(\pi_k) \leq \mathbf{R}_M \leq \mathbf{R}_{\max}(T).$$

If the ends are equal, then $\mathbf{R}_{\max}(T) = \mathbf{R}_M$.

Application: Minimaxity of \bar{X}_n

Setting: Gaussian Model $\mathcal{N}(\theta, 1)^{\otimes n}$ with quadratic loss.

- ① **Estimator:** Consider $T = \bar{X}_n$.
- ② **Maximal Risk:** $\mathbf{R}(\theta, \bar{X}_n) = 1/n$ for all θ . Thus, $\mathbf{R}_{\max}(\bar{X}_n) = 1/n$.
- ③ **Sequence of Priors:** Let $\pi_{\sigma^2} = \mathcal{N}(0, \sigma^2)$.
- ④ **Bayes Risk:** We calculated previously that $\mathbf{R}_B(\pi_{\sigma^2}) = \frac{1}{n + \sigma^{-2}}$.

Conclusion:

$$\lim_{\sigma^2 \rightarrow \infty} \mathbf{R}_B(\pi_{\sigma^2}) = \lim_{\sigma^2 \rightarrow \infty} \frac{1}{n + \sigma^{-2}} = \frac{1}{n} = \mathbf{R}_{\max}(\bar{X}_n).$$

By the Theorem, \bar{X}_n is a **minimax estimator**.

Bayes Estimators under Frequentist Criteria

Proposition

If a Bayes estimator, constructed from a prior $\pi(\theta)$, is associated with a **strictly convex cost function**, then it is **admissible**.

A Frequentist Perspective:

- Criteria such as **minimaxity** and **admissibility** are fundamentally *frequentist* (as they are built from the frequentist risk).
- According to these standards, Bayesian estimators perform better than, or at least as well as, standard frequentist estimators:
 - Their minimax risk is often equal or smaller.
 - They are often all **admissible** (provided the Bayes risk is well-defined).