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Outline

‚ Frequentist vs. Bayesian

‚ Second part: Prior choice
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Frequentist vs. Bayesian?
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Frequentist approach: basic elements

Setup
‚ Data: X1, . . . ,Xn are viewed as random variables, generated i.i.d. from a distribution P✓0 .
‚ Parameter: ✓0 is an unknown but fixed quantity (no probability distribution on ✓0).
‚ Randomness comes only from the sampling of the data.
‚ Probability is seen as the limit of the frequency of an event if I repeat an experiment

indefinitely.

Main inferential tasks
‚ Estimation: construct an estimator ✓̂pX q with good long-run properties (bias, variance,

risk, asymptotic normality).
‚ Confidence sets: build random sets RpX q such that P✓p✓ P RpX qq « 1 ´ ↵.
‚ Hypothesis tests: design tests 'pX q P t0, 1u with controlled type I error and good power.
‚ Prediction: predict a future observation Xn`1 using f pXn`1 | X1, . . . ,Xn, ✓̂nq.
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Some drawbacks of the frequentist approach

1 Practical issues with small samples
‚ Asymptotic theory may no longer be reliable for small n.
‚ Comparison of estimators must use non-asymptotic criteria; many tools based on

convergence in distribution (e.g. asymptotic confidence regions, test statistics) can become
unusable.

2 Tension with the likelihood principle
The likelihood principle says that all information about ✓ in an observation x is contained in the
likelihood L✓pX q “ p✓pX q.
If two observations x1, x2 satisfy

L✓px1q “ c L✓px2q @✓,

they should lead to the same inference.
Frequentist procedures can violate this, because they may depend on other aspects beyond the
likelihood.

5 / 42

youwantto use this

logto a log2b



Some drawbacks of the frequentist approach

3 Maximum likelihood and prediction
‚ The MLE, often viewed as "most efficient", may fail to exist or be non-unique in some

models.
‚ For prediction, the classical plug-in density

p✓̂n pXn`1 | X1, . . . ,Xnq “ p✓̂n pX1, . . . ,Xn,Xn`1q
p✓̂n pX1, . . . ,Xnq

uses the data twice (to estimate ✓ and to condition), which can underestimate uncertainty
(too narrow confidence intervals, overconfident forecasts).
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Bayesian statistical framework
Statistical experiment

‚ We observe a random object X taking values in a measurable space pE , Eq (like Rn or
t0, 1un).

‚ The distribution of X is assumed to belong to a parametric model

P “ tP✓ : ✓ P ⇥u,

where the parameter space satisfies ⇥ Ä Rp for some fixed d • 1.

Bayesian point of view
‚ First step: equip the parameter space ⇥ with a probability measure ⇧, called the prior

distribution.
‚ The parameter becomes a random variable

✓ „ ⇧ on ⇥.
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Prior, likelihood and joint law
Densities
We assume from now on that

‚ for every ✓ P ⇥, P✓ has a density p✓pxq with respect to a sigma-finite measure µ on E :

dP✓pxq “ p✓pxq dµpxq;
‚ the prior ⇧ has a density ⇡p✓q with respect to a sigma-finite measure ⌫ on ⇥:

d⇧p✓q “ ⇡p✓q d⌫p✓q.

Joint distribution of pX , ✓q
We define the joint law Lp✓,X q by the density

px , ✓q fiÑ ⇡p✓q p✓pxq

with respect to the product measure ⌫ b µ.
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Posterior distribution and Bayes formula
Marginals and conditionals
From the joint density ⇡p✓qp✓pxq we recover:

‚ the prior density of ✓ by integrating out x : @✓ P ⇥,
≥
E ⇡p✓qp✓pxq dµpxq “ ⇡p✓q

‚ the conditional law X | ✓ „ P✓ with density p✓pxq
‚ the marginal density of X with respect to µ: BThis is not p✓pxq

f pxq “
ª

⇥
p✓pxq⇡p✓q d⌫p✓q

Posterior and Bayes formula
‚ The posterior distribution is the conditional law Lp✓ | X q, denoted ⇧p ¨ | X q.
‚ Under the density assumptions above, it admits a density w.r.t. ⌫ (Bayes formula):

@✓ P ⇥, ⇡p✓ | X q “ p✓pX q⇡p✓q
f pX q ,

where f pX q “ ≥
⇥ ⇡p✓1qp✓1 pX q d⌫p✓1q is the marginal likelihood. 9 / 42



Why Bayesian? De Finetti’s theorem

Definition: Exchangeability
Random variables X1, . . . ,Xn are exchangeable if for any permutation �, the laws of
pX1, . . . ,Xnq and

`
X�p1q, . . . ,X�pnq

˘
are identical.

De Finetti (1931): representation theorem
For any exchangeable sequence pX1,X2, . . . q of t0, 1u-valued random variables, there exists a
unique probability density ⇡ on r0, 1s such that, for every n and every x1, . . . , xn P t0, 1u,

PpX1 “ x1, . . . ,Xn “ xnq “
ª 1

0

nπ

i“1

✓xi p1 ´ ✓q1´xi⇡p✓q d✓.

The joint law is a mixture of i.i.d. Bernoulli laws.
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Why Bayesian? De Finetti’s theorem

‚ Exchangeable binary data can always be represented as i.i.d. given a parameter ✓ with
prior ⇡p✓q.

‚ The prior ⇡p✓q is not an arbitrary trick: while we do not know what it is exactly, it always
exists.

‚ De Finetti-type results extend to more general cases, giving a strong justification for
Bayesian modeling.
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Prior as information

A prior ⇡p✓q is a probability measure/density that encodes uncertain information about the
parameter ✓ before seeing the data.

The prior allows us to
‚ satisfy the likelihood principle: inferences depend on the likelihood L✓pX q only
‚ represent all uncertainties about ✓
‚ integrate external or expert knowledge a priori, instead of relying solely on the

sample/observation X
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Example: Gaussian model
Model.

X | ✓ „ N p✓, 1q, ✓ „ N p0, 1q

Densities (w.r.t. Lebesgue measure).

p✓pxq “ 1?
2⇡

exp

ˆ
´px ´ ✓q2

2

˙
, ⇡p✓q “ 1?

2⇡
exp

ˆ
´✓2

2

˙

Posterior for one observation X “ x .

⇡p✓ | X “ xq 9⇡p✓q p✓pxq 9 exp

ˆ
´1

2
“
✓2 ` px ´ ✓q2‰˙

Complete the square:

✓2 ` px ´ ✓q2 “ 2
´
✓ ´ x

2
2̄

` x2

2
Hence, up to a normalising constant,

⇡p✓ | X “ xq 9 exp

ˆ
´

´
✓ ´ x

2
2̄
˙

or, equivalently ✓ | X “ x „ N
ˆ
x

2
,

1
2

˙
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Example: Gaussian model
Now take X1, . . . ,Xn i.i.d. given ✓:

Xi | ✓ „ N p✓, 1q, ✓ „ N p0, 1q
Likelihood

nπ

i“1

p✓pxi q 9 exp

˜
´1

2

nÿ

i“1

pxi ´ ✓q2

¸

Posterior

⇡p✓ | x1, . . . , xnq 9⇡p✓q
nπ

i“1

p✓pxi q 9 exp

˜
´1

2

«
✓2 `

nÿ

i“1

pxi ´ ✓q2

�¸

Using x̄n “ 1
n

∞n
i“1 xi and completing the square,

⇡p✓ | x1, . . . , xnq 9 exp

˜
´n ` 1

2

ˆ
✓ ´ nx̄n

n ` 1

2̇
¸

or, equivalently, ✓ | X1, . . . ,Xn „ N
ˆ

nX̄n

n ` 1
,

1
n ` 1

˙

14 / 42



What do we look at in the posterior?
‚ Posterior mean

mX “ Er✓ | X s “
ª

⇥
✓ d⇡p✓ | X q.

‚ Posterior mode (MAP estimator)

modep✓ | X q P argmax
✓P⇥

⇡p✓ | X q “ argmax
✓P⇥

⇡p✓qp✓pX q,

where ⇡p✓ | X q is the posterior density.
‚ Posterior dispersion

‚ For ⇥ Ä R:

vX “ Varp✓ | X q “
ª

⇥

p✓ ´ mX q2 d⇡p✓ | X q.

‚ For ⇥ Ä Rd :

⌃X “
ª

⇥

p✓ ´ mX qp✓ ´ mX qT d⇡p✓ | X q.
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What do we look at in the posterior?

‚ Posterior quantiles
Let F✓|X be the cdf of ⇡p ¨ | X q and F´1

✓|X its (generalised) inverse. For p P p0, 1q:

qppX q “ F´1
✓|X ppq

is the posterior p-quantile (for example q1{2pX q is the posterior median).
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Penalized linear regression

Linear regression model.

We observe pxi , yi q, i “ 1, . . . , n, and assume

yi “ xJ
i ✓ ` "i , "i

i.i.d.„ N p0,�2q.

Penalized least squares. We choose ✓̂n as a minimizer of

nÿ

i“1

pyi ´ xJ
i ✓q2 ` penp✓q.

Typical choices:
‚ Ridge: penp✓q “ �}✓}2

2,
‚ Lasso: penp✓q “ �}✓}1.
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Penalized linear regression: Bayesian view
Bayesian interpretation. Under the Gaussian noise model,

p✓py1, . . . , ynq 9 exp

˜
´ 1

2�2

nÿ

i“1

pyi ´ xJ
i ✓q2

¸

is the likelihood. If we choose a prior

⇡p✓q 9 exp
`

´ penp✓q
˘
,

then we also have

✓̂n “ argmax
✓
⇡p✓ | y1, . . . , ynq

is a MAP estimator.
Penalty ñ prior

‚ Ridge: penp✓q “ �}✓}2
2 ùñ Gaussian prior ⇡p✓q 9 expp´�}✓}2

2q.
‚ Lasso: penp✓q “ �}✓}1 ùñ Laplace prior ⇡p✓q 9 expp´�}✓}1q.

Take-home message: penalized linear regression is Bayesian estimation with an explicit prior
on ✓ (MAP).
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Why even non-Bayesians may like Bayesian methods

Even a true non-Bayesian may like Bayesian methods, because
‚ they are elegant;
‚ they allow us to incorporate prior information in a principled way;
‚ they may be easier to implement in complex models.

A true non-Bayesian will still want to understand the performance of Bayesian procedures in a
non-Bayesian framework: frequentist Bayesian theory (see Lecture 7)

Frequentist Bayesian theory. Assume the data X are generated under a fixed "true’"
parameter ✓0 and consider the posterior ⇧p✓ P ¨ | X q as a random probability measure on the
parameter space. We would like ⇧p✓ P ¨ | X q to put most of its mass near ✓0 for "most"
samples X .

Asymptotic setting. For a growing sample X pnq where the information increases as n Ñ 8,
we want the posterior ⇧p✓ P ¨ | X pnqq to contract around ✓0 fast.
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Prior choice
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Why talk about priors?

‚ The prior ⇧ encodes information we have about the parameter before seeing the data
(expert opinion, physical constraints, etc.).

‚ Different priors can lead to very different posterior distributions ⇡p ¨ | X q, especially with
small samples.

‚ In many applications the available prior information is vague: several priors are compatible
with it, so the choice is often partly arbitrary.

21 / 42



Criteria for choosing a prior

There are many possible criteria for selecting ⇡.
‚ Practical / computational: choose priors that make posterior calculations simple, e.g.

conjugate priors.
‚ Invariance and objective rules: priors such as Jeffreys prior are motivated by invariance

or information arguments.
‚ Empirical Bayes: estimate hyperparameters of the prior from the data.
‚ Hierarchical modelling: use several levels of priors to represent different sources of

variability or uncertainty.
‚ Physical or qualitative information: prior support reflects constraints on the parameter

(positivity, being in a given interval, order restrictions, etc.).

These ideas will guide the different approaches to prior construction described in the following.
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Subjectivist and objective viewpoints
Two Bayesian mindsets.

‚ Subjectivist: the prior represents genuine prior beliefs, informed by past experience and
expert knowledge.

‚ Objective: the prior is not derived from personal beliefs, but constructed in order to "let
the data speak" as much as possible (non informative priors, reference priors, empirical
Bayes, . . . ).

Remarks:
‚ Prior information is rarely precise enough to determine a unique prior; several priors may be

compatible with the same background information ñ the choice is often partly arbitrary.
‚ There is no single universally correct prior, and the choice of prior has an impact on the

inference.
‚ Ambiguity is not specific to Bayes: frequentists also choose among many estimators

(MLE, penalized MLE, . . . ).
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Objective ("non-informative") priors as regularization
‚ In many statistical learning methods, a prior can be viewed as a regularization term on the

likelihood: it penalizes complex models and helps prevent overfitting.
‚ However, we often do not want to privilege any particular parametrization of ✓.

Example
A variable X with Weibull law can be parametrized in different ways:

f px | ⌘,�q “ �

⌘�
x�´1 exp

`
´ px{⌘q�

˘
1x•0,

or, equivalently,

f px | µ,�q “ µ�x�´1 exp
`

´ µx�
˘
1x•0.

The prior information we might have about X should not depend on whether we use p⌘,�q or
pµ,�q.

‚ Objective priors aim to encode only minimal information, in a way that is as invariant to
reparametrization as possible.
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Uniform priors?

Exercise
Let ✓ P r1, 2s be the parameter of a model X „ p✓. Assume we do not know anything else
about X or about ✓.

‚ We decide to use the prior ✓ „ Ur1, 2s.
‚ Now reparametrize the model in terms of

� “ 1{✓ P r1{2, 1s,

so that X „ q�, where q� “ p✓.

Question. Can we also choose a uniform prior

� „ Ur1{2, 1s ?
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Uniform priors?
We do not have the same prior if we put a uniform distribution on ✓ or �

We used the change-of-variable formula ⇡�p�q “ ⇡✓php�qq
ˇ̌
ˇ dhd�

ˇ̌
ˇ for hp�q “ 1{�.
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Improper and weakly informative priors

‚ Objectively, we often only have very weak information such as “the likelihood of a
potential dataset should have this form” .

‚ General construction rules can also lead to priors ⇡p✓q that are not probability measures, in
the sense that ª

⇥
⇡p✓q d✓ “ 8.

These are called improper priors.

‚ In the literature they are sometimes called non-informative priors, but strictly speaking no
prior is completely information-free. A better description is weakly informative.
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Posterior with improper prior
BSuch priors are useful only if the resulting posterior is a proper probability distribution
(integrable and normalizable).

Definition
Suppose we use an improper prior ⇡ on ✓ and assume that, for the observed data X ,

ª

⇥
p✓pX q d⇡p✓q † 8 almost surely.

Then the corresponding posterior distribution ⇡r¨ | X s is a probability measure with density
given by

✓ fi›Ñ ⇡p✓ | X q “ p✓pX q⇡p✓qª

⇥
p✓pX q⇡p✓q d⌫p✓q

.
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Jeffreys prior: motivation

Invariance principle
If we move from ✓ to ⌘ “ gp✓q by a bijection g , the amount of prior information should not
change:

⇡˚p⌘q “
ˇ̌
ˇ̌det B⌘

B✓

ˇ̌
ˇ̌⇡pg´1p⌘qq

should encode the same beliefs as ⇡p✓q.

To construct such a prior, Jeffreys proposes to use the Fisher information I p✓q, which measures
how informative the model P✓ is about ✓.
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Fisher information
Consider a regular parametric model tP✓, ✓ P ⇥u on X with density p✓pxq and log-likelihood

`✓pX q “ log p✓pX q.

Score

`1
✓pX q “ B

B✓ `✓pX q “ p1
✓pX q

p✓pX q .

Fisher information at ✓

I p✓q “ E✓

“
`1
✓pX q2‰

.

For an i.i.d. sample X pnq “ pX1, . . . ,Xnq from P✓, the information adds up:

Inp✓q “ n I p✓q.

Large I p✓q means the likelihood is very peaked around ✓, so the data dominate the prior there.
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Jeffreys prior in one dimension
Definition: Jeffreys prior, 1D
For ⇥ Ä R, if I p✓q exists, the Jeffreys prior is

⇡p✓q “
a
I p✓q.

‚ This construction uses only the model p✓pxq.
‚ Regions where the model is very informative (I p✓q large) receive more prior mass, so that

the prior has less influence on the posterior.
Examples

‚ Bernoulli model Bp✓q, ✓ P p0, 1q: I p✓q “ 1
✓p1´✓q , hence

⇡p✓q 9 ✓´1{2p1 ´ ✓q´1{2,

i.e. a Betap1{2, 1{2q prior.
‚ Normal model X | ✓ „ N p✓, 1q: I p✓q “ 1, so ⇡p✓q 9 1 (improper flat prior).
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Jeffreys prior in higher dimensions
For ✓ P ⇥ Ä Rd , the Fisher information matrix is

Iijp✓q “ ´E✓

„ B2

B✓i B✓j
log f pX | ✓q

⇢
.

Definition: Jeffreys prior, d -dimensional
If I p✓q exists, define

⇡p✓q 9
a
det I p✓q.

Invariance property Let ⌘ “ gp✓q be any smooth bijective reparametrization. If
⇡✓p✓q 9

a
det I p✓q, then the induced density on ⌘ satisfies

⇡⌘p⌘q 9
a
det I p⌘q.

Hence Jeffreys prior automatically respects the invariance principle.
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Jeffreys prior

Proof:
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Jeffreys prior: exercises

Exercise 1 (Exponential model). Let X | ✓ „ Ep✓q with rate ✓ ° 0.
‚ Compute the Fisher information I p✓q.
‚ Deduce the Jeffreys prior ⇡p✓q 9

a
I p✓q.

Exercise 2 (Weibull model). Let X follow a Weibull law with two common parametrizations

ppx | ⌘,�q “ �

⌘
c

ˆ
x

⌘

˙�´1

exp

«
´

ˆ
x

⌘

˙�
�

1tx•0u,

ppx | µ,�q “ �µx�´1 expp´µx�q 1tx•0u.

‚ Compute the Jeffreys prior in each parametrization.
‚ Check that the two expressions are coherent by using the change-of-variables formula.
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Conjugate priors: idea

Goal. Choose a prior family that is stable under Bayesian updating.

Definition (conjugate family)
Let P “ tP✓, ✓ P ⇥u be a statistical model and F a family of prior distributions on ⇥. We say
that F is conjugate for P if, for every ⇡ P F , the posterior law ⇡r¨ | X s also belongs to F .

Why it is useful.

‚ Posterior has the same functional form as the prior; only hyperparameters change, not
structural form.

‚ Closed forms for posterior mean, variance, credible sets, predictions, etc.
‚ Easy to simulate from the posterior if we know how to simulate from the prior.
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Exponential family and natural conjugate priors
Consider a k-dimensional exponential family in natural form

p✓pxq “ hpxq expt✓ ¨ T pxq ´  p✓qu, ✓ P ⇥ Ä Rk .

A standard natural conjugate prior for ✓ is

⇡p✓ | a, bq 9 expt✓ ¨ a ´ b  p✓qu, a P Rk , b ° 0.

Given one observation x , Bayes rule gives the posterior

⇡p✓ | a, b, xq 9 expt✓ ¨ pa ` T pxqq ´ pb ` 1q p✓qu,
so the posterior is again in the same family, with updated hyperparameters

pa, bq ›Ñ pa ` T pxq, b ` 1q.
For a sample x1, . . . , xn the update is

pa, bq ›Ñ
`
a ` ∞n

i“1 T pxi q, b ` n
˘
.
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Natural conjugate priors for some common models

f px | ✓q ⇡p✓q ⇡p✓ | xq
N p✓,�2q N pµ, ⌧2q N

`
%p�2µ ` ⌧2xq, %�2⌧2˘

, %´1 “ �2 ` ⌧2

Poissonp✓q Gammap↵,�q Gammap↵ ` x ,� ` 1q
Gammap⌫, ✓q Gammap↵,�q Gammap↵ ` ⌫,� ` xq
Binomialpn, ✓q Betap↵,�q Betap↵ ` x ,� ` n ´ xq
NegBinpm, ✓q Betap↵,�q Betap↵ ` m,� ` xq

Multinomialkp✓1, . . . , ✓kq Dirichletp↵1, . . . ,↵kq Dirichletp↵1 ` x1, . . . ,↵k ` xkq
N pµ, 1{✓q Gammap↵,�q Gamma

`
↵ ` 1

2 , � ` pµ´xq2
2

˘

X1, . . . ,Xn | ✓ „ Unifp0, ✓q Paretop↵, rq Paretop↵ ` n, rX q, rX “ maxtr ,X1, . . . ,Xnu
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Hierarchical Bayes: idea
Motivation.

‚ In many problems we need a prior on a parameter ✓, but we are not sure how to choose it.
‚ We introduce a hyperparameter � that controls a family of priors

✓ | � „ ⇡p✓ | �q.
‚ Then we put a second–level prior on �:

� „ ⇡p�q.
Joint model.

X , ✓, � „ p✓pX q⇡p✓ | �q⇡p�q.
Advantages.

‚ Provides a flexible framework for modeling families of priors.
‚ Allows us to encode partial prior information and share information across related

parameters (random effects, panel data, etc.).
‚ Hyperparameters � play the role of an index for a whole family t⇡p¨ | �qu� .
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Hierarchical Bayes vs empirical Bayes
Hierarchical Bayes.

‚ We treat � as an unknown random quantity:

✓ | � „ ⇡p✓ | �q, � „ ⌘p�q.
‚ Posterior inference is based on

⇡p✓, � | xq 9 p✓pX q⇡p✓ | �q⇡p�q.
‚ Fully Bayesian: uncertainty on � is propagated into the posterior of ✓.

Empirical Bayes.

‚ We choose a parametric family of priors t⇡�p✓qu�P� (e.g. Normal, Gamma, Beta).
‚ Use the data to estimate � (for example by marginal likelihood):

f�pX q “
ª
p✓pX q⇡�p✓q d✓, �̂ “ argmax

�
f�pX q.

‚ Then treat ⇡�̂p✓q as the prior and perform standard Bayes.
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Empirical Bayes: examples
Gaussian model.

‚ Data: X1, . . . ,Xn | ✓ „ N p✓, 1q i.i.d.
‚ Prior family: ✓ „ N pµ, 1q, with hyperparameter µ.
‚ Marginal likelihood for one observation:

fµpX1q “
ª
N pX1 | ✓, 1qN p✓ | µ, 1q d✓ “ N pX1 | µ, 2q.

‚ Maximizing fµpX1q gives µ̂ “ X1; for n observations, µ̂ “ X̄n.
‚ Empirical Bayes prior: ✓ „ N pX̄n, 1q.

Poisson model.

‚ Data: X1, . . . ,Xn | ✓ „ Pp✓q i.i.d.
‚ Prior family: ✓ „ Expp�q.
‚ Empirical Bayes estimate: �̂ “ 1{X̄n, so the prior becomes ✓ „ Expp1{X̄nq.
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Fusion of priors from multiple experts
Suppose we have M possible priors ⇡1p✓q, . . . ,⇡Mp✓q (e.g. from different experts), with weights
!i • 0,

∞M
i“1 !i “ 1.

Linear (arithmetic) pool.

⇡linp✓q “
Mÿ

i“1

!i⇡i p✓q.

‚ Natural, but Bposterior of ⇡lin is not the same as the weighted sum of posteriors ⇡i p✓ | xq.
Logarithmic (geometric) pool.

⇡logp✓q “
±M

i“1 ⇡i p✓q!i

≥
⇥

±M
i“1 ⇡i puq!i du

.

‚ Combining first, then updating, is coherent with updating each prior then combining.
‚ Note: it is the prior that minimizes a weighted sum of Kullback–Leibler divergences:

⇡˚p✓q “ argmin
⇡

Mÿ

i“1

!iKLp⇡,⇡i q, KLp⇡,⇡i q “
ª
logp⇡p✓q{⇡i p✓qq⇡p✓qd✓
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