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Outline

® Frequentist vs. Bayesian

® Second part: Prior choice
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Frequentist vs. Bayesian?



Frequentist approach: basic elements

Setup

® Data: Xi,..., X, are viewed as random variables, generated i.i.d. from a distribution Py, .
® Parameter: 6 is an unknown but fixed quantity (no probability distribution on 6g).
® Randomness comes only from the sampling of the data.

® Probability is seen as the limit of the frequency of an event if | repeat an experiment
indefinitely.

Main inferential tasks

e Estimation: construct an estimator 8(X) with good long-run properties (bias, variance,
risk, asymptotic normality).

* Confidence sets: build random sets R(X) such that Pg(6 € R(X)) ~ 1 — o
* Hypothesis tests: design tests (X) € {0,1} with controlled type | error and good power.

* Prediction: predict a future observation X, 1 using (X1 | X1,..., Xy, én)
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Some drawbacks of the frequentist approach

@ Practical issues with small samples
® Asymptotic theory may no longer be reliable for small n.

® Comparison of estimators must use non-asymptotic criteria; many tools based on

convergence in distribution (e.g. asymptotic confidence regions, test statistics) can become
unusable.

® Tension with the likelihood principle
The likelihood principle says that all information about 0 in an observation x is contained in the

ikelihood Lo(X) = po(X). —= oc) vl fo vee FRs]
If two observations xi, x> satisfy

o(x1) = cLo(x2) V0, QOg Lo () = Q%’ L@ié

they should lead to the same inference.

Frequentist procedures can violate this, because they may depend on other aspects beyond the
likelihood.
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Some drawbacks of the frequentist approach

© Maximum likelihood and prediction

® The MLE, often viewed as "most efficient", may fail to exist or be non-unique in some
models.
® For prediction, the classical plug-in density

pén (Xl, e ,Xn, Xn_|_1)
pén(Xl’ cee ,Xn)

pén(XrH-l | Xl, .. ,Xn) =

uses the data twice (to estimate 6 and to condition), which can underestimate uncertainty
(too narrow confidence intervals, overconfident forecasts).
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Bayesian statistical framework

Statistical experiment

* We observe a random object X taking values in a measurable space (E, &) (like R” or
{0,1}").

® The distribution of X is assumed to belong to a parametric model
P = {f%;: 0 e ()},
where the parameter space satisfies © — RP for some fixed d > 1.

Bayesian point of view

® First step: equip the parameter space © with a probability measure [1, called the prior
distribution.

® The parameter becomes a random variable

6 ~1T1 on©O.
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Prior, likelihood and joint law

Densities
We assume from now oOon that

* for every € ©, Py has a density pg(x) with respect to a sigma-finite measure p on E:
dPy(x) = po(x) dpu(x);
® the prior 1 has a density () with respect to a sigma-finite measure v on ©:

dn(e) = =(0) dv(6).

Joint distribution of (X,0) (ewer M@M\m} CM\A\ d\ﬁ )\)/Q\V&:‘OO

We define the joint law £(6, X) by the density
(x,0) — 7(0) po(x)

with respect to the product measure v ® L.
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Posterior distribution and Bayes formula

Marginals and conditionals

From the joint density 7(0)py(x) we recover:
® the prior density of 6 by integrating out x: V8 € ©, {_7(0)po(x) du(x) = ()
* the conditional law X | § ~ Py with density py(x)
® the marginal density of X with respect to u: /A\This is not py(x)

ﬂ@zLWMMQW@

Posterior and Bayes formula
® The posterior distribution is the conditional law L£(6 | X), denoted I1( - | X).

® Under the density assumptions above, it admits a density w.r.t. v (Bayes formula):

po(X) 7(0)
FIX)

veO, w(|X)=

where f(X) = {g 7(0")pg (X) dv(¢') is the marginal likelihood.
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Remacolility
=D ety Why Bayesian? De Finetti’'s theorem

Definition: Exchangea bility

Random variables X, ..., X, are exchangeable if for any permutation o, the laws of

(X1,...,X,) and ( o(1)y - - XU(,,)) are identical.  In SL\q)'gl b omeans MHoe is me 1mbo
;m FHRe imdex osde>

De Finetti (1931): representation theorem

For any exchangeable sequence (X1, Xa,...) of {0, 1}-valued random variables, there exists a

unique probability density 7 on [0, 1] such that, for every n and every xi,...,x, € {0, 1},
1 /n
f)()<1 = X1y, Jm QX’ 1 —Xi
i=1
=po O‘) S
The joint law is a mixture of i.i.d. Bernoulli laws. B@-/V)GU

we o@|r41/v\ gCX> gy@w\ d EQH@&CM\

V.
A V% (X ] %) /W\QALQ,Q w\m gmm A

Q 1Lid. olsesvghons
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Why Bayesian? De Finetti's theorem

® Exchangeable binary data can always be represented as i.i.d. given a parameter 6 with
prior w(60).

® The prior w(6) is not an arbitrary trick: while we do not know what it is exactly, it always
exists.

® De Finetti-type results extend to more general cases, giving a strong justification for
Bayesian modeling.
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Prior as information

A prior w(0) is a probability measure/density that encodes uncertain information about the
parameter 0 before seeing the data.

The prior allows us to

* satisfy the likelihood principle: inferences depend on the likelihood Ly(X) only

* represent all uncertainties about § <=— 4nd ACL-1X] is yemaming  Om calainl Q}&
SeLh

® integrate external or expert knowledge a priori, instead of relying solely on the d ﬁ
sample/observation X Q- avq
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Example: Gaussian model

Model.
X |0 ~N(,1), 6 ~N(0,1)

Densities (w.r.t. Lebesgue measure).

i) = —ep(-P50) . w0 - ——ew (%)

Posterior for one observation X = x.
1
(0 | X = x) ocw(0) po(x) oc exp <_§ [92 +(x— 9)2])

Complete the square:

2
92+(x—9)2=2(9—5> +%

Hence, up to a normalising constant,

X

2
(0| X = x) oc exp (— (9 — —) ) or, equivalently | X =x~ ./\/(

2
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Example: Gaussian model

Now take Xi,..., X, i.i.d. given 0:
Xi|0~N(,1), 6 ~N(0,1)
Likelihood

Posterior
7T((9 | X1y ,X,,) OC7T(9) HPG(Xi) oC exp <_% [92 n Z(Xi _ 9)2]>

Using X, = %Zle x; and completing the square,

1 %\ .
7r(0|x1,...,x,,)ocexp<—n—£ (Q—nnjl)>or, equivalently, 9|X1,...,XH~N(




What do we look at in the posterior?

® Posterior mean
mx — E[0| X] = f 0dn(0] X).
e

® Posterior mode (MAP estimator)

mode(0 | X) € argmaxw(0 | X) = argmax 7 (0)py(X),
0c© 0O

where (60 | X) is the posterior density.

® Posterior dispersion
® For © c R:

vx = Var(f | X) = L(e—mx)zdw(mxy

® For © c R¢:

Yx = L(e — mx)(0 — mx) " dn(6 | X).
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What do we look at in the posterior?

{ & elX

® Posterior quantiles

Let Fy;x be the cdf of 7(- | X) and Fe_pl( its (generalised) inverse. For p € (0,1):

4p(X) = Fox(p) = "m@{@‘ F@Lx(é) D/P?S

is the posterior p-quantile (for example g;/»(X) is the posterior median).
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Penalized linear regression

Linear regression model.

We observe (x;,y;), i =1,...,n, and assume
RIS S
Vi =X,-T9—|—€,', Ej I'19'/\/'(0,02).
Penalized least squares. We choose 0, as a minimizer of )‘g m Z \3/ Q@zs*—sfyam_
n o5 imaber msl

Z(Yi—xfji;eren(H). U“"CZUQ% O}%ﬂ\’mgﬁq

i=1
!
Oﬁg) {6 m>](>

Typical choices:
 Ridge: pen(9) = |03,
 Lasso: pen(f) = \|0];.
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Penalized linear regression: Bayesian view
Bayesian interpretation. Under the Gaussian noise model,

1 n
p@(yla"'ayn)OCeXp<_2—2 (yi_X/T9)2>
o i=1

is the likelihood. If we choose a prior /7‘//9}3) C}’/ or
m(6) oc exp( — pen(@)), S T
then we also have ) Q)(g) (, \_'L é (é) =% é)
Qn:argmgaxw(ﬁ\yl,.-.,yn) fJ)QM (9))

2

Is a MAP estimator.

Penalty <= prior
* Ridge: pen(f) = )\||#]|3 = Gaussian prior m(6) oc exp(—\||0]|3).
® Lasso: pen(f) = A||@||y = Laplace prior 7(0) oc exp(—A\|0|1).
Take-home message: penalized linear regression is Bayesian estimation with an explicit prior

on 6 (MAP).
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Why even non-Bayesians may like Bayesian methods

Even a true non-Bayesian may like Bayesian methods, because
® they are elegant;
® they allow us to incorporate prior information in a principled way;

® they may be easier to implement in complex models.

A true non-Bayesian will still want to understand the performance of Bayesian procedures in a
non-Bayesian framework: frequentist Bayesian theory (see Lecture 7)

Frequentist Bayesian theory. Assume the data X are generated under a fixed "true'"
parameter 6y and consider the posterior [1(6 € - | X) as a random probability measure on the
parameter space. We would like (6 € - | X) to put most of its mass near 6 for "most"
samples X.

Asymptotic setting. For a growing sample X(") where the information increases as n — o0,
we want the posterior M(# € - | X(") to contract around 6 fast.
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Prior choice
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Why talk about priors?

® The prior I1 encodes information we have about the parameter before seeing the data
(expert opinion, physical constraints, etc.).

* Different priors can lead to very different posterior distributions 7( - | X), especially with
small samples.

® In many applications the available prior information is vague: several priors are compatible
with it, so the choice is often partly arbitrary.
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Criteria for choosing a prior

There are many possible criteria for selecting .

* Practical / computational: choose priors that make posterior calculations simple, e.g.
conjugate priors.

* Invariance and objective rules: priors such as Jeffreys prior are motivated by invariance
or information arguments.

e Empirical Bayes: estimate hyperparameters of the prior from the data.

* Hierarchical modelling: use several levels of priors to represent different sources of
variability or uncertainty.

* Physical or qualitative information: prior support reflects constraints on the parameter
(positivity, being in a given interval, order restrictions, etc.).

These ideas will guide the different approaches to prior construction described in the following.
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Subjectivist and objective viewpoints

Two Bayesian mindsets.

® Subjectivist: the prior represents genuine prior beliefs, informed by past experience and
expert knowledge.

® Objective: the prior is not derived from personal beliefs, but constructed in order to "let
the data speak" as much as possible (non informative priors, reference priors, empirical
Bayes, ...).

Remarks:

® Prior information is rarely precise enough to determine a unique prior; several priors may be
compatible with the same background information = the choice is often partly arbitrary.

® There is no single universally correct prior, and the choice of prior has an impact on the
inference.

e Ambiguity is not specific to Bayes: frequentists also choose among many estimators
(MLE, penalized MLE, ...).
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Objective ("non-informative") priors as regularization

® In many statistical learning methods, a prior can be viewed as a regularization term on the
likelihood: it penalizes complex models and helps prevent overfitting.
* However, we often do not want to privilege any particular parametrization of 6.

Example { \3@1 XS @‘k

A variable X with Weibull law can be parametrized in different ways:
_ B s 8
f(x|n,B)= U_BX eXP( — (x/n) )1x>o,

or, equivalently,
f(x |, B) = pBx?exp(— px”) Lzo.

The prior information we might have about X should not depend on whether we use (7, 3) or
(1, B).
® Objective priors aim to encode only minimal information, in a way that is as invariant to

reparametrization as possible.
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Uniform priors?

Exercise
Let 0 € [1,2] be the parameter of a model X ~ py. Assume we do not know anything else
about X or about 6.

* We decide to use the prior 6 ~ U[1,2].
* Now reparametrize the model in terms of P‘é

6=1/0¢[1/2,1],

so that X ~ g4, where g4 = py.

Question. Can we also choose a uniform prior

b ~U[1/2,1] ?
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Uniform priors?

We do not have the same prior if we put a uniform distribution on 6 or ¢

Densities of Band ¢ = 1/0

45
— n(0)=1126<>
4.0 —_ ﬂ(¢)=¢%—]0,55¢51
3.5 A
3.0 1
> 2.5
2
8 2.0 B
154
104
0.5
0.0 T
0.0 0.5 10 15 20 25

We used the change-of-variable formula 74 (¢) = mo(h(¢)) ‘j—g‘ for h(¢) = 1/¢.
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Improper and weakly informative priors

® Objectively, we often only have very weak information such as “the likelihood of a
potential dataset should have this form”.

® General construction rules can also lead to priors 7(#) that are not probability measures, in
the sense that

L) 7(0)df = oo.

These are called improper priors.

® In the literature they are sometimes called non-informative priors, but strictly speaking no
prior is completely information-free. A better description is weakly informative.
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Posterior with improper prior

/A\Such priors are useful only if the resulting posterior is a proper probability distribution
(integrable and normalizable).

Definition
Suppose we use an improper prior ™ on 6 and assume that, for the observed data X,

J po(X)dm(0) < oo almost surely.
e

Then the corresponding posterior distribution 7[- | X] is a probability measure with density
given by

0 (0] X) = po(X)m(0)
f@ po(X) 7(60) du(0)
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Jeffreys prior: motivation

Invariance principle
If we move from 6 to n = g(0) by a bijection g, the amount of prior information should not
change:

should encode the same beliefs as ().

To construct such a prior, Jeffreys proposes to use the Fisher information /(#), which measures
how informative the model Py is about 6.
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Fisher information
Consider a regular parametric model {Py, 0 € ©} on X with density py(x) and log-likelihood

lo(X) = log pg(X).

/ /
((X) = 2 to(X) = l‘jzg; ) & (X)] =()

Fisher information at 60 ) g X PQ
"E:@Y— %Of)] = 1(0) =Eq [%(X)2]. (VQT{GNQOQ I\Q‘Z §CaT€,)

Score

For an i.i.d. sample X" = (X{,...,X,) from Py, the information adds up:
1,(0) = nl(0).

Large /(0) means the likelihood is very peaked around 6, so the data dominate the prior there.

30/42



Jeffreys prior in one dimension

Definition: Jeffreys prior, 1D
For © c R, if /() exists, the Jeffreys prior is

a_
7(0) = /1(0).

® This construction uses only the model py(x).

® Regions where the model is very informative (/(0) large) receive more prior mass, so that
the prior has less influence on the posterior.

Examples
* Bernoulli model B(6), 6 € (0,1): 1(0) = ﬁ, hence
m(0) oc 0 2(1 — )12,

i.e. a Beta(1/2,1/2) prior.
* Normal model X | ~ N (0,1): 1(6) =1, so w(6) oc1 (improper flat prior).
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Jeffreys prior in higher dimensions

For 6 € © ¢ R? the Fisher information matrix is

a2
li;(0) = _Ee[ﬁﬁ-é’ﬁ- log (X | 9)] :
i OYj

Definition: Jeffreys prior, d-dimensional
If 1(0) exists, define

() oc A/det 1(6).

Invariance property Let n = g(6) be any smooth bijective reparametrization. If

7o (0) oc n/det [(0), then the induced density on 7 satisfies

() oCA/det I(n).

Hence Jeffreys prior automatically respects the invariance principle.
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Jeffreys prior

@
write ,
Proof: ) ﬂL /‘M ?Rm
fS,ﬂ«(w—]hv Pﬂm d\ y )i/ﬁfqy
tn PM)("

L) [pé ?g“)ér A@lﬂé)l‘a og /rz 3(6 gor @/\'/H’(ﬁ)cf :t(@)
s i) = t /}_{”L( /7“(% (’2)) (Qﬁd/ﬂj@ og VafwM/

=R (”L 47 ( Wﬂz/)] W//
NI )
\We oHhain bl j@%@ﬁ S Py 8- wde Cbh mew o)



Jeffreys prior: exercises

Exercise 1 (Exponential model). Let X | 6 ~ £(0) with rate 6 > 0. -0
. : : (1) - Be ﬂ/
® Compute the Fisher information /(6). P@ 220
® Deduce the Jeffreys prior w(0) oc4/1(0).

Exercise 2 (Weibull model). Let X follow a Weibull law with two common parametrizations

p-1 B
p(X | 7776) - gc (%) exp[— (%) ] 1{X>0}7

p(x | 11, B) = Bux""" exp(—px”) Lixsoy.-

e Compute the Jeffreys prior in each parametrization. UU«QQ,S‘{ %HS@D&Q&[ »@U]' @f/ﬂ, @Y/L

® Check that the two expressions are coherent by using the change-of-variables formula.
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Conjugate priors: idea
Goal. Choose a prior family that is stable under Bayesian updating.

Definition (conjugate family)
Let P = {Py, 6 € ©} be a statistical model and F a family of prior distributions on ©. We say
that F is conjugate for P if, for every m € F, the posterior law 7[- | X] also belongs to F.

¢ = c CLYL m
Why it is useful. 06&%) SJ‘/{ /hé /E k %Q QC\R

® Posterior has the same functional form as the prior; only hyperparameters change, not
structural form.

® (Closed forms for posterior mean, variance, credible sets, predictions, etc.

® Easy to simulate from the posterior if we know how to simulate from the prior.
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Exponential family and natural conjugate priors

Consider a k-dimensional exponential family in natural form

po(x) = h(x) exp{d - T(x) — 1(0)}, fe© c Rk

A standard natural conjugate prior for 0 is
R e V. S§%64€?
\33‘\@3‘—‘9 (0 |(a, b) oc exp{f-a— biy(0)}, aecRX b>0.
Given one observation x, Bayes rule gives the posterior
00 gm0 | a,b.x) o explf- (a+ T(x)) — (b + 1)u(0)),
so the posterior is again in the same family, with updated hyperparameters
(a,b) — (a+ T(x), b+1).

For a sample xq, ..., x, the update is

(a,b) — (a+ X7, T(xi), b+ n).
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Natural conjugate priors for some common models

Po ()
e ) m(0) (6 | x)
N(0,0°) N (u, 7°) Mo(o®pn + 1), 00°7%), o " =0 +71°
Poisson(0) Gamma(a, ) Gamma(a + x, 5 + 1)
Gamma(v, 6) Gammal(a, 3) Gamma(a + v, 8 + x)
Binomial(n, 6) Beta(a, 5) Beta(a + x, 8+ n — x)
NegBin(m, 0) Beta(a, 8) Beta(a+ m, 8 + x)
Multinomialk (61, . . ., 60k) Dirichlet(a1, . . ., ak) Dirichlet(c1 + x1, . . ., ak + xk)
N(u,1/0) Gamma(a, ) Gamma(a + 3, 3 + @)
Xi,..., Xn | 0 ~ Unif(0,0) Pareto(a, r) Pareto(a + n, rx), rx = max{r, X1,..., Xy}
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Hierarchical Bayes: idea
Motivation.
® In many problems we need a prior on a parameter 6, but we are not sure how to choose it.
® We introduce a hyperparameter v that controls a family of priors

0|y ~m@]).

® Then we put a second—level prior on ~:

v~ 7(7).

Joint model.
X, 0,7 ~ po(X)m(0 | v) (7).
Advantages.
® Provides a flexible framework for modeling families of priors.

* Allows us to encode partial prior information and share information across related
parameters (random effects, panel data, etc.).

* Hyperparameters « play the role of an index for a whole family {7 (- | v)},.
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Hierarchical Bayes vs empirical Bayes
Hierarchical Bayes.
® \We treat v as an unknown random quantity:
Oly~m@1]v), v~nl).

® Posterior inference is based on

m(0, | x) oc po(X) (0 | ) ().
* Fully Bayesian: uncertainty on +y is propagated into the posterior of 6.

Empirical Bayes.
* We choose a parametric family of priors {7 (0)},er (e.g. Normal, Gamma, Beta).
® Use the data to estimate ~ (for example by marginal likelihood):

£(X) = f po(X) 7 (6) d6, 4 = argmax , (X).

® Then treat m4(6) as the prior and perform standard Bayes.
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Empirical Bayes: examples
Gaussian model.
e Data: Xi,...,X, |0 ~N(6,1)i.id.
® Prior family: 6 ~ N (u,1), with hyperparameter p.

* Marginal likelihood for one observation:

£(X0) — fN(Xl 01N | 1) db = N (X0 | 1.2).

* Maximizing f,,(X1) gives i = Xi; for n observations, fi = X,,.
* Empirical Bayes prior: § ~ N'(X,,1).

Poisson model.
° Data: Xi,...,X, |0 ~P(0)iid.
® Prior family: 6 ~ Exp(\).
e Empirical Bayes estimate: A\ = 1/X,, so the prior becomes 6 ~ Exp(1/X,).
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Fusion of priors from multiple experts
Suppose we have M possible priors w1 (), ..., mpm(0) (e.g. from different experts), with weights
w;j = O,A§:ﬁilcu;:: 1.

Linear (arithmetic) pool.
M
in(0) = Z w;Ti(6)
i=1

* Natural, but /\posterior of 7, is not the same as the weighted sum of posteriors 7;(6 | x).

Logarithmic (geometric) pool.

H,M L i(0)*

S@ 177, u‘”'du'

Tog(0) =

® Combining first, then updating, is coherent with updating each prior then combining.
® Note: it is the prior that minimizes a weighted sum of Kullback—Leibler divergences:

M
*(0) = arg mﬂin Z wiKL(7, ), KL(m,m;) = flog(w(@)/w;(@))w(@)d@
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Different approaches

a~ ()
Bla~n(B]a)
0)ca,8~m]a,pB)

X |6~ po
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Different approaches

a ~ m(a)
Bla~n(B]a)
0| a,B~mn0|a,p)

X |6~ py Likelihood / Frequentist model
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Different approaches

a~ m(a)

Bla~n(|a)
0|a,8~m0]a,pl) Empirical Bayes / Bayesian model

X‘@NP@
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Different approaches

a ~ ()

Bla~n(B]|a) Hierarchical Bayes
0fa,p~mn]|a,pb)
X |0~ po
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Different approaches

a~ () Hierarchical Bayes
Bla~n(B|a)
0fa,p~mn]|a,pb)
X |0~ po
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