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Outline

‚ Frequentist vs. Bayesian

‚ Second part: Prior choice
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Frequentist vs. Bayesian?
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Frequentist approach: basic elements

Setup
‚ Data: X1, . . . ,Xn are viewed as random variables, generated i.i.d. from a distribution Pθ0 .
‚ Parameter: θ0 is an unknown but fixed quantity (no probability distribution on θ0).
‚ Randomness comes only from the sampling of the data.
‚ Probability is seen as the limit of the frequency of an event if I repeat an experiment

indefinitely.

Main inferential tasks
‚ Estimation: construct an estimator θ̂pX q with good long-run properties (bias, variance,

risk, asymptotic normality).
‚ Confidence sets: build random sets RpX q such that Pθpθ P RpX qq « 1´ α.
‚ Hypothesis tests: design tests ϕpX q P t0, 1u with controlled type I error and good power.
‚ Prediction: predict a future observation Xn`1 using f pXn`1 | X1, . . . ,Xn, θ̂nq.
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Some drawbacks of the frequentist approach

1 Practical issues with small samples
‚ Asymptotic theory may no longer be reliable for small n.
‚ Comparison of estimators must use non-asymptotic criteria; many tools based on

convergence in distribution (e.g. asymptotic confidence regions, test statistics) can become
unusable.

2 Tension with the likelihood principle
The likelihood principle says that all information about θ in an observation x is contained in the
likelihood LθpX q “ pθpX q.
If two observations x1, x2 satisfy

Lθpx1q “ c Lθpx2q @θ,

they should lead to the same inference.
Frequentist procedures can violate this, because they may depend on other aspects beyond the
likelihood.
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Some drawbacks of the frequentist approach

3 Maximum likelihood and prediction
‚ The MLE, often viewed as "most efficient", may fail to exist or be non-unique in some

models.
‚ For prediction, the classical plug-in density

pθ̂n pXn`1 | X1, . . . ,Xnq “
pθ̂n pX1, . . . ,Xn,Xn`1q

pθ̂n pX1, . . . ,Xnq

uses the data twice (to estimate θ and to condition), which can underestimate uncertainty
(too narrow confidence intervals, overconfident forecasts).
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Bayesian statistical framework

Statistical experiment
‚ We observe a random object X taking values in a measurable space pE , Eq (like Rp).
‚ The distribution of X is assumed to belong to a parametric model

P “ tPθ : θ P Θu,

where the parameter space satisfies Θ Ă Rd for some fixed d ě 1.

Bayesian point of view
‚ First step: equip the parameter space Θ with a probability measure Π, called the prior

distribution.
‚ The parameter becomes a random variable

θ „ Π on Θ.

7 / 42



Prior, likelihood and joint law
Densities
We assume from now on that
‚ for every θ P Θ, Pθ has a density pθpxq with respect to a sigma-finite measure µ on E :

dPθpxq “ pθpxq dµpxq;

‚ the prior Π has a density πpθq with respect to a sigma-finite measure ν on Θ:

dΠpθq “ πpθq dνpθq.

Joint distribution of pX , θq

We define the joint law Lpθ,X q by the density

px , θq ÞÑ πpθq pθpxq

with respect to the product measure ν b µ.
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Posterior distribution and Bayes formula
Marginals and conditionals
From the joint density πpθqpθpxq we recover:
‚ the prior density of θ by integrating out x : @θ P Θ,

ş

E
πpθqpθpxq dµpxq “ πpθq

‚ the conditional law X | θ „ Pθ with density pθpxq

‚ the marginal density of X with respect to µ: BThis is not pθpxq

f pxq “

ż

Θ

pθpxqπpθq dνpθq

Posterior and Bayes formula
‚ The posterior distribution is the conditional law Lpθ | X q, denoted Πp ¨ | X q.
‚ Under the density assumptions above, it admits a density w.r.t. ν (Bayes formula):

@θ P Θ, πpθ | X q “
pθpX qπpθq

f pX q
,

where f pX q “
ş

Θ
πpθ1qpθ1pX q dνpθ1q is the marginal likelihood. 9 / 42



Why Bayesian? De Finetti’s theorem

Definition: Exchangeability
Random variables X1, . . . ,Xn are exchangeable if for any permutation σ, the laws of
pX1, . . . ,Xnq and

`

Xσp1q, . . . ,Xσpnq
˘

are identical.

De Finetti (1931): representation theorem
For any exchangeable sequence pX1,X2, . . . q of t0, 1u-valued random variables, there exists a
unique probability density π on r0, 1s such that, for every n and every x1, . . . , xn P t0, 1u,

PpX1 “ x1, . . . ,Xn “ xnq “

ż 1

0

n
ź

i“1

θxi p1´ θq1´xiπpθq dνpθq.

The joint law is a mixture of i.i.d. Bernoulli laws.
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Why Bayesian? De Finetti’s theorem

‚ Exchangeable binary data can always be represented as i.i.d. given a parameter θ with
prior πpθq.

‚ The prior πpθq is not an arbitrary trick: while we do not know what it is exactly, it always
exists.

‚ De Finetti-type results extend to more general cases, giving a strong justification for
Bayesian modeling.
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Prior as information

A prior πpθq is a probability measure/density that encodes uncertain information about the
parameter θ before seeing the data.

The prior allows us to
‚ satisfy the likelihood principle: inferences depend on the likelihood LθpX q only
‚ represent all uncertainties about θ
‚ integrate external or expert knowledge a priori, instead of relying solely on the

sample/observation X
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Example: Gaussian model
Model.

X | θ „ N pθ, 1q, θ „ N p0, 1q

Densities (w.r.t. Lebesgue measure).

pθpxq “
1
?
2π

exp

ˆ

´
px ´ θq2

2

˙

, πpθq “
1
?
2π

exp

ˆ

´
θ2

2

˙

Posterior for one observation X “ x .

πpθ | X “ xq9πpθq pθpxq9 exp

ˆ

´
1
2
“

θ2 ` px ´ θq2
‰

˙

Complete the square:

θ2 ` px ´ θq2 “ 2
´

θ ´
x

2

¯2
`

x2

2
Hence, up to a normalising constant,

πpθ | X “ xq9 exp

ˆ

´

´

θ ´
x

2

¯2
˙

or, equivalently θ | X “ x „ N
ˆ

x

2
,
1
2

˙
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Example: Gaussian model
Now take X1, . . . ,Xn i.i.d. given θ:

Xi | θ „ N pθ, 1q, θ „ N p0, 1q

Likelihood
n
ź

i“1

pθpxi q9 exp

˜

´
1
2

n
ÿ

i“1

pxi ´ θq
2

¸

Posterior

πpθ | x1, . . . , xnq9πpθq
n
ź

i“1

pθpxi q9 exp

˜

´
1
2

«

θ2 `

n
ÿ

i“1

pxi ´ θq
2

ff¸

Using x̄n “
1
n

řn
i“1 xi and completing the square,

πpθ | x1, . . . , xnq9 exp

˜

´
n ` 1
2

ˆ

θ ´
nx̄n
n ` 1

˙2
¸

or, equivalently, θ | X1, . . . ,Xn „ N
ˆ

nX̄n

n ` 1
,

1
n ` 1

˙
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What do we look at in the posterior?
‚ Posterior mean

mX “ Erθ | X s “
ż

Θ

θ dπpθ | X q.

‚ Posterior mode (MAP estimator)

modepθ | X q P arg max
θPΘ

πpθ | X q “ arg max
θPΘ

πpθqpθpX q,

where πpθ | X q is the posterior density.
‚ Posterior dispersion

‚ For Θ Ă R:

vX “ Varpθ | X q “

ż

Θ

pθ ´mX q
2 dπpθ | X q.

‚ For Θ Ă Rd :

ΣX “

ż

Θ

pθ ´mX qpθ ´mX q
T dπpθ | X q.
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What do we look at in the posterior?

‚ Posterior quantiles
Let Fθ|X be the cdf of πp ¨ | X q and F´1

θ|X its (generalised) inverse. For p P p0, 1q:

qppX q “ F´1
θ|X ppq

is the posterior p-quantile (for example q1{2pX q is the posterior median).
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Penalized linear regression

Linear regression model.
We observe pxi , yi q, i “ 1, . . . , n, and assume

yi “ xJi θ ` εi , εi
i.i.d.
„ N p0, σ2q.

Penalized least squares. We choose θ̂n as a minimizer of

n
ÿ

i“1

pyi ´ xJi θq
2 ` penpθq.

Typical choices:
‚ Ridge: penpθq “ λ}θ}22,
‚ Lasso: penpθq “ λ}θ}1.
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Penalized linear regression: Bayesian view
Bayesian interpretation. Under the Gaussian noise model,

pθpy1, . . . , ynq9 exp

˜

´
1

2σ2

n
ÿ

i“1

pyi ´ xJi θq
2

¸

is the likelihood. If we choose a prior

πpθq9 exp
`

´ penpθq
˘

,

then we also have

θ̂n “ arg max
θ
πpθ | y1, . . . , ynq

is a MAP estimator.

Penalty ðñ prior
‚ Ridge: penpθq “ λ}θ}22 ùñ Gaussian prior πpθq9 expp´λ}θ}22q.
‚ Lasso: penpθq “ λ}θ}1 ùñ Laplace prior πpθq9 expp´λ}θ}1q.

Take-home message: penalized linear regression is Bayesian estimation with an explicit prior
on θ (MAP).
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Why even non-Bayesians may like Bayesian methods

Even a true non-Bayesian may like Bayesian methods, because
‚ they are elegant;
‚ they allow us to incorporate prior information in a principled way;
‚ they may be easier to implement in complex models.

A true non-Bayesian will still want to understand the performance of Bayesian procedures in a
non-Bayesian framework: frequentist Bayesian theory (see Lecture 7)

Frequentist Bayesian theory. Assume the data X are generated under a fixed "true’"
parameter θ0 and consider the posterior Πpθ P ¨ | X q as a random probability measure on the
parameter space. We would like Πpθ P ¨ | X q to put most of its mass near θ0 for "most"
samples X .

Asymptotic setting. For a growing sample X pnq where the information increases as nÑ8,
we want the posterior Πpθ P ¨ | X pnqq to contract around θ0 fast.
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Prior choice
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Why talk about priors?

‚ The prior Π encodes information we have about the parameter before seeing the data
(expert opinion, physical constraints, etc.).

‚ Different priors can lead to very different posterior distributions πp ¨ | X q, especially with
small samples.

‚ In many applications the available prior information is vague: several priors are compatible
with it, so the choice is often partly arbitrary.
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Criteria for choosing a prior

There are many possible criteria for selecting π.
‚ Practical / computational: choose priors that make posterior calculations simple, e.g.

conjugate priors.
‚ Invariance and objective rules: priors such as Jeffreys prior are motivated by invariance

or information arguments.
‚ Empirical Bayes: estimate hyperparameters of the prior from the data.
‚ Hierarchical modelling: use several levels of priors to represent different sources of

variability or uncertainty.
‚ Physical or qualitative information: prior support reflects constraints on the parameter

(positivity, being in a given interval, order restrictions, etc.).

These ideas will guide the different approaches to prior construction described in the following.
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Subjectivist and objective viewpoints

Two Bayesian mindsets.
‚ Subjectivist: the prior represents genuine prior beliefs, informed by past experience and

expert knowledge.
‚ Objective: the prior is not derived from personal beliefs, but constructed in order to "let

the data speak" as much as possible (non informative priors, reference priors, empirical
Bayes, . . . ).

Remarks:
‚ Prior information is rarely precise enough to determine a unique prior; several priors may be

compatible with the same background information ñ the choice is often partly arbitrary.
‚ There is no single universally correct prior, and the choice of prior has an impact on the

inference.
‚ Ambiguity is not specific to Bayes: frequentists also choose among many estimators

(MLE, penalized MLE, . . . ).
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Objective ("non-informative") priors as regularization
‚ In many statistical learning methods, a prior can be viewed as a regularization term on the

likelihood: it penalizes complex models and helps prevent overfitting.
‚ However, we often do not want to privilege any particular parametrization of θ.

Example
A variable X with Weibull law can be parametrized in different ways:

f px | η, βq “
β

ηβ
xβ´1 exp

`

´ px{ηqβ
˘

1xě0,

or, equivalently,

f px | µ, βq “ µβxβ´1 exp
`

´ µxβ
˘

1xě0.

The prior information we might have about X should not depend on whether we use pη, βq or
pµ, βq.
‚ Objective priors aim to encode only minimal information, in a way that is as invariant to

reparametrization as possible.
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Uniform priors?

Exercise
Let θ P r1, 2s be the parameter of a model X „ pθ. Assume we do not know anything else
about X or about θ.

‚ We decide to use the prior θ „ Ur1, 2s.
‚ Now reparametrize the model in terms of

φ “ 1{θ P r1{2, 1s,

so that X „ qφ, where qφ “ pθ.

Question. Can we also choose a uniform prior

φ „ Ur1{2, 1s ?
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Uniform priors?
We do not have the same prior if we put a uniform distribution on θ or φ

We used the change-of-variable formula πφpφq “ πθphpφqq
ˇ

ˇ

ˇ

dh
dφ

ˇ

ˇ

ˇ
for hpφq “ 1{φ.
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Improper and weakly informative priors

‚ Objectively, we often only have very weak information such as “the likelihood of a
potential dataset should have this form” .

‚ General construction rules can also lead to priors πpθq that are not probability measures, in
the sense that

ż

Θ

πpθqdθ “ 8.

These are called improper priors.

‚ In the literature they are sometimes called non-informative priors, but strictly speaking no
prior is completely information-free. A better description is weakly informative.
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Posterior with improper prior
BSuch priors are useful only if the resulting posterior is a proper probability distribution
(integrable and normalizable).

Definition
Suppose we use an improper prior π on θ and assume that, for the observed data X ,

ż

Θ

pθpX q dπpθq ă 8 almost surely.

Then the corresponding posterior distribution πr¨ | X s is a probability measure with density
given by

θ ÞÝÑ πpθ | X q “
pθpX qπpθq

ż

Θ

pθpX qπpθqdνpθq
.
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Jeffreys prior: motivation

Invariance principle
If we move from θ to η “ gpθq by a bijection g , the amount of prior information should not
change:

π˚pηq “

ˇ

ˇ

ˇ

ˇ

det
Bη

Bθ

ˇ

ˇ

ˇ

ˇ

πpg´1pηqq

should encode the same beliefs as πpθq.

To construct such a prior, Jeffreys proposes to use the Fisher information I pθq, which measures
how informative the model Pθ is about θ.
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Fisher information
Consider a regular parametric model tPθ, θ P Θu on X with density pθpxq and log-likelihood

`θpX q “ log pθpX q.

Score

`1θpX q “
B

Bθ
`θpX q “

p1θpX q

pθpX q
.

Fisher information at θ

I pθq “ Eθ
“

`1θpX q
2‰.

For an i.i.d. sample X pnq “ pX1, . . . ,Xnq from Pθ, the information adds up:

Inpθq “ n I pθq.

Large I pθq means the likelihood is very peaked around θ, so the data dominate the prior there.
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Jeffreys prior in one dimension

Definition: Jeffreys prior, 1D
For Θ Ă R, if I pθq exists, the Jeffreys prior is

πpθq “
a

I pθq.

‚ This construction uses only the model pθpxq.
‚ Regions where the model is very informative (I pθq large) receive more prior mass, so that

the prior has less influence on the posterior.
Examples
‚ Bernoulli model Bpθq, θ P p0, 1q: I pθq “ 1

θp1´θq , hence

πpθq9 θ´1{2p1´ θq´1{2,

i.e. a Betap1{2, 1{2q prior.
‚ Normal model X | θ „ N pθ, 1q: I pθq “ 1, so πpθq9 1 (improper flat prior).
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Jeffreys prior in higher dimensions
For θ P Θ Ă Rd , the Fisher information matrix is

Iijpθq “ ´Eθ
„

B2

Bθi Bθj
log f pX | θq



.

Definition: Jeffreys prior, d-dimensional
If I pθq exists, define

πpθq9
a

det I pθq.

Invariance property Let η “ gpθq be any smooth bijective reparametrization. If
πθpθq9

a

det I pθq, then the induced density on η satisfies

πηpηq9
a

det I pηq.

Hence Jeffreys prior automatically respects the invariance principle.
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Jeffreys prior

Proof:
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Jeffreys prior: exercises

Exercise 1 (Exponential model). Let X | θ „ Epθq with rate θ ą 0.
‚ Compute the Fisher information I pθq.
‚ Deduce the Jeffreys prior πpθq9

a

I pθq.

Exercise 2 (Weibull model). Let X follow a Weibull law with two common parametrizations

ppx | η, βq “
β

η
c

ˆ

x

η

˙β´1

exp

«

´

ˆ

x

η

˙β
ff

1txě0u,

ppx | µ, βq “ βµxβ´1 expp´µxβq 1txě0u.

‚ Compute the Jeffreys prior in each parametrization.
‚ Check that the two expressions are coherent by using the change-of-variables formula.
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Conjugate priors: idea

Goal. Choose a prior family that is stable under Bayesian updating.

Definition (conjugate family)
Let P “ tPθ, θ P Θu be a statistical model and F a family of prior distributions on Θ. We say
that F is conjugate for P if, for every π P F , the posterior law πr¨ | X s also belongs to F .

Why it is useful.
‚ Posterior has the same functional form as the prior; only hyperparameters change, not

structural form.
‚ Closed forms for posterior mean, variance, credible sets, predictions, etc.
‚ Easy to simulate from the posterior if we know how to simulate from the prior.
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Exponential family and natural conjugate priors
Consider a k-dimensional exponential family in natural form

pθpxq “ hpxq exptθ ¨ T pxq ´ ψpθqu, θ P Θ Ă Rk .

A standard natural conjugate prior for θ is

πpθ | a, bq 9 exptθ ¨ a´ b ψpθqu, a P Rk , b ą 0.

Given one observation x , Bayes rule gives the posterior

πpθ | a, b, xq 9 exptθ ¨ pa` T pxqq ´ pb ` 1qψpθqu,

so the posterior is again in the same family, with updated hyperparameters

pa, bq ÝÑ pa` T pxq, b ` 1q.

For a sample x1, . . . , xn the update is

pa, bq ÝÑ
`

a`
řn

i“1 T pxi q, b ` n
˘

.
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Natural conjugate priors for some common models

f px | θq πpθq πpθ | xq

N pθ, σ2
q N pµ, τ2

q N
`

%pσ2µ` τ2xq, %σ2τ2˘, %´1
“ σ2

` τ2

Poissonpθq Gammapα, βq Gammapα` x , β ` 1q

Gammapν, θq Gammapα, βq Gammapα` ν, β ` xq

Binomialpn, θq Betapα, βq Betapα` x , β ` n ´ xq

NegBinpm, θq Betapα, βq Betapα`m, β ` xq

Multinomialkpθ1, . . . , θkq Dirichletpα1, . . . , αkq Dirichletpα1 ` x1, . . . , αk ` xkq

N pµ, 1{θq Gammapα, βq Gamma
`

α` 1
2 , β `

pµ´xq2

2

˘

X1, . . . ,Xn | θ „ Unifp0, θq Paretopα, rq Paretopα` n, rX q, rX “ maxtr ,X1, . . . ,Xnu
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Hierarchical Bayes: idea
Motivation.
‚ In many problems we need a prior on a parameter θ, but we are not sure how to choose it.
‚ We introduce a hyperparameter γ that controls a family of priors

θ | γ „ πpθ | γq.

‚ Then we put a second–level prior on γ:

γ „ πpγq.

Joint model.
X , θ, γ „ pθpX qπpθ | γqπpγq.

Advantages.
‚ Provides a flexible framework for modeling families of priors.
‚ Allows us to encode partial prior information and share information across related
parameters (random effects, panel data, etc.).

‚ Hyperparameters γ play the role of an index for a whole family tπp¨ | γquγ .
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Hierarchical Bayes vs empirical Bayes
Hierarchical Bayes.
‚ We treat γ as an unknown random quantity:

θ | γ „ πpθ | γq, γ „ ηpγq.

‚ Posterior inference is based on

πpθ, γ | xq9 pθpX qπpθ | γqπpγq.

‚ Fully Bayesian: uncertainty on γ is propagated into the posterior of θ.

Empirical Bayes.
‚ We choose a parametric family of priors tπγpθquγPΓ (e.g. Normal, Gamma, Beta).
‚ Use the data to estimate γ (for example by marginal likelihood):

fγpX q “

ż

pθpX qπγpθq dθ, γ̂ “ arg max
γ

fγpX q.

‚ Then treat πγ̂pθq as the prior and perform standard Bayes.
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Empirical Bayes: examples
Gaussian model.
‚ Data: X1, . . . ,Xn | θ „ N pθ, 1q i.i.d.
‚ Prior family: θ „ N pµ, 1q, with hyperparameter µ.
‚ Marginal likelihood for one observation:

fµpX1q “

ż

N pX1 | θ, 1qN pθ | µ, 1q dθ “ N pX1 | µ, 2q.

‚ Maximizing fµpX1q gives µ̂ “ X1; for n observations, µ̂ “ X̄n.
‚ Empirical Bayes prior: θ „ N pX̄n, 1q.

Poisson model.
‚ Data: X1, . . . ,Xn | θ „ Ppθq i.i.d.
‚ Prior family: θ „ Exppλq.
‚ Empirical Bayes estimate: λ̂ “ 1{X̄n, so the prior becomes θ „ Expp1{X̄nq.
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Fusion of priors from multiple experts
Suppose we have M possible priors π1pθq, . . . , πMpθq (e.g. from different experts), with weights
ωi ě 0,

řM
i“1 ωi “ 1.

Linear (arithmetic) pool.

πlinpθq “
M
ÿ

i“1

ωiπi pθq.

‚ Natural, but Bposterior of πlin is not the same as the weighted sum of posteriors πi pθ | xq.

Logarithmic (geometric) pool.

πlogpθq “

śM
i“1 πi pθq

ωi

ş

Θ

śM
i“1 πi puq

ωi du
.

‚ Combining first, then updating, is coherent with updating each prior then combining.
‚ Note: it is the prior that minimizes a weighted sum of Kullback–Leibler divergences:

π˚pθq “ arg min
π

M
ÿ

i“1

ωiKLpπ, πi q, KLpπ, πi q “

ż

logpπpθq{πi pθqqπpθqdθ
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Different approaches

α „ πpαq

Hierarchical Bayes

β | α „ πpβ | αq

Hierarchical Bayes

θ | α, β „ πpθ | α, βq

Empirical Bayes / Bayesian model

X | θ „ pθ

Likelihood / Frequentist model
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