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Outline

® Frequentist vs. Bayesian

® Second part: Prior choice
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Frequentist vs. Bayesian?



Frequentist approach: basic elements

Setup
® Data: Xi,..., X, are viewed as random variables, generated i.i.d. from a distribution Py,.
® Parameter: 6y is an unknown but fixed quantity (no probability distribution on 6).

® Randomness comes only from the sampling of the data.

Probability is seen as the limit of the frequency of an event if | repeat an experiment
indefinitely.

Main inferential tasks

e Estimation: construct an estimator A(X) with good long-run properties (bias, variance,
risk, asymptotic normality).

* Confidence sets: build random sets R(X) such that Pp(6 € R(X)) ~ 1 — a.
* Hypothesis tests: design tests p(X) € {0, 1} with controlled type | error and good power.
* Prediction: predict a future observation X, 1 using f(X,+1 | X1, ... ,Xn,@,,).
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Some drawbacks of the frequentist approach

@ Practical issues with small samples
® Asymptotic theory may no longer be reliable for small n.
® Comparison of estimators must use non-asymptotic criteria; many tools based on
convergence in distribution (e.g. asymptotic confidence regions, test statistics) can become
unusable.

® Tension with the likelihood principle
The likelihood principle says that all information about 6 in an observation x is contained in the
likelihood Lo (X) = po(X).
If two observations x1, x» satisfy

Lg(x&) =C LQ(XQ) V@,

they should lead to the same inference.
Frequentist procedures can violate this, because they may depend on other aspects beyond the
likelihood.
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Some drawbacks of the frequentist approach

©® Maximum likelihood and prediction

® The MLE, often viewed as "most efficient", may fail to exist or be non-unique in some
models.
® For prediction, the classical plug-in density

_ pén(X17 e 7X"7X"+1)
pén(X17 e 7X”)

Py, (Xn+1 | X1, ..., Xn)

uses the data twice (to estimate ¢ and to condition), which can underestimate uncertainty
(too narrow confidence intervals, overconfident forecasts).
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Bayesian statistical framework

Statistical experiment

* \We observe a random object X taking values in a measurable space (E, &) (like RP).

® The distribution of X is assumed to belong to a parametric model
P ={Py:0€ 0}
where the parameter space satisfies © — RY for some fixed d > 1.

Bayesian point of view

® First step: equip the parameter space © with a probability measure [1, called the prior
distribution.

® The parameter becomes a random variable

0 ~T1 onO.
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Prior, likelihood and joint law

Densities
We assume from now on that

e for every 8 € ©, Py has a density py(x) with respect to a sigma-finite measure p on E:
dPy(x) = po(x) du(x);
® the prior I1 has a density 7(0) with respect to a sigma-finite measure v on ©:

dn(9) = «(6) dv(6).

Joint distribution of (X, 0)
We define the joint law £(6, X) by the density

(x,8) = 7(6) po(x)

with respect to the product measure v ® p.
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Posterior distribution and Bayes formula

Marginals and conditionals

From the joint density 7(0)pg(x) we recover:
* the prior density of 6 by integrating out x: Y0 € ©, §.7(0)pg(x) du(x) = m(0)
* the conditional law X | 8 ~ Py with density py(x)
¢ the marginal density of X with respect to u: A\This is not py(x)

) = |_pox)n(6) dv(o)
o
Posterior and Bayes formula
® The posterior distribution is the conditional law £(6 | X), denoted IM(- | X).

® Under the density assumptions above, it admits a density w.r.t. v (Bayes formula):

_ po(X)7(0)

Voeo, x(0]X) o

where f(X) = (o w(6")pg: (X) dv(8') is the marginal likelihood.
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Why Bayesian? De Finetti's theorem

Definition: Exchangeability
Random variables Xi, ..., X, are exchangeable if for any permutation o, the laws of
(X1,...,X,) and (Xg(l), . ,XU(,,)) are identical.

De Finetti (1931): representation theorem

For any exchangeable sequence (X1, Xz, ...) of {0,1}-valued random variables, there exists a
unique probability density = on [0, 1] such that, for every n and every xq, ..., x, € {0,1},

P(X1 = x1,..., X0 = Xy) = L ﬁé)x"(l — )17 (0) dv(6).

The joint law is a mixture of i.i.d. Bernoulli laws.
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Why Bayesian? De Finetti's theorem

® Exchangeable binary data can always be represented as i.i.d. given a parameter 6 with
prior m(0).

® The prior w(#) is not an arbitrary trick: while we do not know what it is exactly, it always
exists.

¢ De Finetti-type results extend to more general cases, giving a strong justification for
Bayesian modeling.
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Prior as information

A prior 7(0) is a probability measure/density that encodes uncertain information about the
parameter 6 before seeing the data.

The prior allows us to
® satisfy the likelihood principle: inferences depend on the likelihood Lg(X) only
® represent all uncertainties about 6

® integrate external or expert knowledge a priori, instead of relying solely on the
sample/observation X
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Example: Gaussian model

Model.
X160 ~N(,1), 6 ~N(0,1)

Densities (w.r.t. Lebesgue measure).

po(x) = \/% exp <_(X —29)2) . w() = \/% exp (_922>

Posterior for one observation X = x.

(0| X = x) cw(6) pp(x) o exp(—; [67 + (x — 9)2])

Complete the square:
2
62 4+ (x — ) =2(0—f) +

Hence, up to a normalising constant,

x\2 , x 1
m(0] X =x) exp(- (6‘ - 5) ) or, equivalently 0| X =x~ /\/(2, 2)
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Example: Gaussian model
Now take Xi,..., X, i.i.d. given 6:

X160 ~N(6,1), 6 ~N(0,1)
Likelihood

Posterior

m(0 | x1,...,%,) cm(H) ﬁpg(x,-) oC exp <; l92 + an(x,- - 9)2]>

Using X, = %27:1 x; and completing the square,

1 %\’ _ X, 1
(0| Xx1,...,Xn) X eXp(—H (9— e ) ) or, equivalently,| | X1,..., X, ~N< n )

2 n+1 n+1 n+1

14 /42



What do we look at in the posterior?

® Posterior mean
mx — E[0] X] = J 0dr(0 | X).
e
® Posterior mode (MAP estimator)
mode(8 | X) € argmaxn (0 | X) = arg maxw(6)py(X),
0e© 0e©

where (6 | X) is the posterior density.

® Posterior dispersion
® For©@ c R:

vx = Var(0| X) = f(@—mx)zdw(e\X).
(€]
® For ©® c RY:

ZX = J(efmx)(efmx)-rdﬂ'(e | X)
(€]
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What do we look at in the posterior?

® Posterior quantiles
Let Fyx be the cdf of 7(- | X) and F, ‘X its (generalised) inverse. For p € (0,1):

QP(X) = F9|x( )

is the posterior p-quantile (for example g1 /2(X) is the posterior median).
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Penalized linear regression

Linear regression model.
We observe (x;,y;), i =1,...,n, and assume

yi=x;'0+¢;, g M N(0,02).

Penalized least squares. We choose 6, as a minimizer of

n

2. = x70)? + pen(8).

i=1

Typical choices:
e Ridge: pen(d) = A\|0]3,
® Lasso: pen(f) = A|6];.
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Penalized linear regression: Bayesian view
Bayesian interpretation. Under the Gaussian noise model,

1 . Tp\2
Po(Y1,-- -5 Yn) L exp(—%z ;(yi_Xi 0) )

is the likelihood. If we choose a prior
7(0) oc exp( — pen(0)),
then we also have
0, = arg m9ax7r(6‘ | Vi, s ¥n)

is a MAP estimator.
Penalty < prior
* Ridge: pen(f) = \||#|53 = Gaussian prior m(8) oc exp(—\[|6]3).
® Lasso: pen(f) = A6, = Laplace prior 7(8) oc exp(—X|0]1).
Take-home message: penalized linear regression is Bayesian estimation with an explicit prior

on 6 (MAP).
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Why even non-Bayesians may like Bayesian methods

Even a true non-Bayesian may like Bayesian methods, because
e they are elegant;
¢ they allow us to incorporate prior information in a principled way;

® they may be easier to implement in complex models.

A true non-Bayesian will still want to understand the performance of Bayesian procedures in a
non-Bayesian framework: frequentist Bayesian theory (see Lecture 7)

Frequentist Bayesian theory. Assume the data X are generated under a fixed "true'"
parameter 6y and consider the posterior (6 € - | X) as a random probability measure on the
parameter space. We would like (6 € - | X) to put most of its mass near 6 for "most"
samples X.

Asymptotic setting. For a growing sample X (" where the information increases as n — o0,
we want the posterior (6 € - | X(") to contract around 6 fast.
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Prior choice
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Why talk about priors?

® The prior I encodes information we have about the parameter before seeing the data
(expert opinion, physical constraints, etc.).

e Different priors can lead to very different posterior distributions 7( - | X), especially with
small samples.

® In many applications the available prior information is vague: several priors are compatible
with it, so the choice is often partly arbitrary.
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Criteria for choosing a prior

There are many possible criteria for selecting .

* Practical / computational: choose priors that make posterior calculations simple, e.g.
conjugate priors.

¢ |nvariance and objective rules: priors such as Jeffreys prior are motivated by invariance
or information arguments.

e Empirical Bayes: estimate hyperparameters of the prior from the data.

¢ Hierarchical modelling: use several levels of priors to represent different sources of
variability or uncertainty.

® Physical or qualitative information: prior support reflects constraints on the parameter
(positivity, being in a given interval, order restrictions, etc.).

These ideas will guide the different approaches to prior construction described in the following.
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Subjectivist and objective viewpoints

Two Bayesian mindsets.

® Subjectivist: the prior represents genuine prior beliefs, informed by past experience and
expert knowledge.

® Objective: the prior is not derived from personal beliefs, but constructed in order to "let
the data speak" as much as possible (non informative priors, reference priors, empirical
Bayes, ...).

Remarks:

e Prior information is rarely precise enough to determine a unique prior; several priors may be
compatible with the same background information = the choice is often partly arbitrary.

® There is no single universally correct prior, and the choice of prior has an impact on the
inference.

® Ambiguity is not specific to Bayes: frequentists also choose among many estimators
(MLE, penalized MLE, ...).
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Objective ("non-informative") priors as regularization

® In many statistical learning methods, a prior can be viewed as a regularization term on the
likelihood: it penalizes complex models and helps prevent overfitting.
® However, we often do not want to privilege any particular parametrization of 6.

Example
A variable X with Weibull law can be parametrized in different ways:

B s
f(x|n,pB) = nfﬁxﬂ ! exp( - (X/n)ﬁ)lxzo,
or, equivalently,

F(x |, B) = pBx" " exp(— px”) Lezo.

The prior information we might have about X should not depend on whether we use (7, 8) or
(1, B).-
® Objective priors aim to encode only minimal information, in a way that is as invariant to

reparametrization as possible.
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Uniform priors?

Exercise
Let 0 € [1,2] be the parameter of a model X ~ py. Assume we do not know anything else
about X or about 6.

* We decide to use the prior 8 ~ U[1,2].

* Now reparametrize the model in terms of
¢ =1/0¢€[1/2,1],

so that X ~ g4, where g4 = py.

Question. Can we also choose a uniform prior

b ~U[1/2,1] ?
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Uniform priors?

We do not have the same prior if we put a uniform distribution on 6 or ¢

Densities of 6 and ¢ = 1/0

— n(6)=11<0<2

— ng)=jrlos<g=1

0.0 05 1.0 15 20 25

We used the change-of-variable formula 74 (¢) = mg(h(¢)) ’j—g’ for h(¢) = 1/¢.
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Improper and weakly informative priors

¢ Objectively, we often only have very weak information such as “the likelihood of a
potential dataset should have this form”.

® General construction rules can also lead to priors m(6) that are not probability measures, in
the sense that

L m(0) do = 0.

These are called improper priors.

® In the literature they are sometimes called non-informative priors, but strictly speaking no
prior is completely information-free. A better description is weakly informative.
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Posterior with improper prior

A\Such priors are useful only if the resulting posterior is a proper probability distribution
(integrable and normalizable).

Definition
Suppose we use an improper prior  on 6 and assume that, for the observed data X,

f po(X)dm(f) < oo almost surely.
e

Then the corresponding posterior distribution 7[- | X] is a probability measure with density
given by

po(X) 7(0)

0 — (0] X) = .
je po(X) (0) du(6)
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Jeffreys prior: motivation

Invariance principle
If we move from 0 to n = g(6) by a bijection g, the amount of prior information should not
change:

det @

e m)

™(n) =

should encode the same beliefs as 7(0).

To construct such a prior, Jeffreys proposes to use the Fisher information /(6), which measures
how informative the model Py is about 6.
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Fisher information
Consider a regular parametric model {Py, 0 € ©} on X with density py(x) and log-likelihood

£o(X) = log po(X).
Score

0 py(X)

Fisher information at ¢

1(0) = Eo[£5(X)?].

For an i.i.d. sample X(" = (Xq,..., X,) from Py, the information adds up:

1,(6) = n1(6).

Large /(6) means the likelihood is very peaked around 6, so the data dominate the prior there.
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Jeffreys prior in one dimension

Definition: Jeffreys prior, 1D
For © c R, if /(0) exists, the Jeffreys prior is

m(0) = /1(6).

® This construction uses only the model py(x).

® Regions where the model is very informative (/(9) large) receive more prior mass, so that
the prior has less influence on the posterior.

Examples
* Bernoulli model B(6), 8 € (0,1): 1(0) = ﬁ, hence

m(0) oc 721 — 9)1/2,

i.e. a Beta(1/2,1/2) prior.
* Normal model X | 0 ~ N(6,1): 1(0) =1, so 7(#) oc 1 (improper flat prior).
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Jeffreys prior in higher dimensions
For 0 € © c RY, the Fisher information matrix is

(‘12
106) = B zyoag e F(X 1 9)].

Definition: Jeffreys prior, d-dimensional
If 1(0) exists, define

7(0) oc A/det 1(6).

Invariance property Let 7 = g(0) be any smooth bijective reparametrization. If

mg(6) oc A/det I(0), then the induced density on 7 satisfies

() ocA/det [(n).

Hence Jeffreys prior automatically respects the invariance principle.
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Jeffreys prior

Proof:
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Jeffreys prior: exercises

Exercise 1 (Exponential model). Let X | § ~ £(0) with rate 6 > 0.
® Compute the Fisher information /().
® Deduce the Jeffreys prior 7(6) oc+/1(6).

Exercise 2 (Weibull model). Let X follow a Weibull law with two common parametrizations

B-1 8
px|n,B) = gc (;) eXPl— (;) ] Lix=0

p(x | 1, B) = Bux" " exp(—px") Lxz0p-

e Compute the Jeffreys prior in each parametrization.

® Check that the two expressions are coherent by using the change-of-variables formula.
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Conjugate priors: idea
Goal. Choose a prior family that is stable under Bayesian updating.

Definition (conjugate family)
Let P = {Py, 0 € ©} be a statistical model and F a family of prior distributions on ©. We say
that F is conjugate for P if, for every m € F, the posterior law [- | X] also belongs to F.

Why it is useful.

® Posterior has the same functional form as the prior; only hyperparameters change, not
structural form.

¢ Closed forms for posterior mean, variance, credible sets, predictions, etc.

¢ Easy to simulate from the posterior if we know how to simulate from the prior.
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Exponential family and natural conjugate priors

Consider a k-dimensional exponential family in natural form

po(x) = h(x) exp{f - T(x) — ¥ (6)}, fe©c Rk

A standard natural conjugate prior for 6 is
m(0 ] a,b) c exp{f-a—by(H)}, aeRK b>0.
Given one observation x, Bayes rule gives the posterior
(0] a, b,x) oc exp{f-(a+ T(x)) — (b+ 1)y(0)},
so the posterior is again in the same family, with updated hyperparameters
(a,b) — (a+ T(x), b+1).
For a sample xi, ..., x, the update is

(a’ b) — (a + 27:1 T(X,')7 b+ n).
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Natural conjugate priors for some common models

f(x]90) (0) (0] x)

N(0,57) N (i, 7%) Mo(o®u + 7°x), 00°7%), o0 "=0"+71°

Poisson(8) Gamma(a, 3) Gamma(a + x, 8 + 1)
Gamma(v, ) Gamma(a, 3) Gamma(a + v, § + x)
Binomial(n, 0) Beta(a, 3) Beta(a + x, 8 4+ n — x)
NegBin(m, 6) Beta(a, 3) Beta(a + m, § + x)

Multinomialk (61, . . ., k) Dirichlet(aa, .. ., axk) Dirichlet(ay + x1, ..., ok + X«)
N(u,1/0) Gamma(a, ) Gamma(a + %, B+ @)

X1, ..., Xn | 0 ~ Unif(0,0)

Pareto(a, r)

Pareto(a + n, rx), rx = max{r,X1,...,Xa}
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Hierarchical Bayes: idea
Motivation.
® In many problems we need a prior on a parameter 6, but we are not sure how to choose it.
® We introduce a hyperparameter ~ that controls a family of priors

Oy ~n(0]v).

® Then we put a second—level prior on ~:

v~ 7m(y).

Joint model.
X, 0,7 ~ po(X)m(0 | v) m(7).
Advantages.
® Provides a flexible framework for modeling families of priors.

e Allows us to encode partial prior information and share information across related
parameters (random effects, panel data, etc.).

® Hyperparameters v play the role of an index for a whole family {=(- | v)},.

38 /42



Hierarchical Bayes vs empirical Bayes
Hierarchical Bayes.
® We treat y as an unknown random quantity:
Oly~=m@[v), v~n().

e Posterior inference is based on

(0,7 | x) o po(X) (0 | ) 7w ()
* Fully Bayesian: uncertainty on  is propagated into the posterior of 6.

Empirical Bayes.
* We choose a parametric family of priors {7, (0)}er (e.g. Normal, Gamma, Beta).
® Use the data to estimate « (for example by marginal likelihood):

f,(X) = Jpg(X) m(0)df, A =arg max £, (X).

® Then treat m4(6) as the prior and perform standard Bayes.
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Empirical Bayes: examples
Gaussian model.
® Data: Xi,...,X, |0 ~N(6,1)i.id.
® Prior family: 6 ~ N(u, 1), with hyperparameter p.

® Marginal likelihood for one observation:

L06) = [ WX |0, N6 | 1,1)d8 = N (X | 1,2).

* Maximizing f,(X1) gives fi = Xi; for n observations, ji = X,.
* Empirical Bayes prior: 6 ~ N'(X,,1).
Poisson model.
® Data: Xi,..., X, |0 ~P(0) iid.
* Prior family: 6 ~ Exp(]).
e Empirical Bayes estimate: A = 1/X,, so the prior becomes 6 ~ Exp(1/X,).
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Fusion of priors from multiple experts
Suppose we have M possible priors 71(0), ..., mm(0) (e.g. from different experts), with weights
w;j = 0, Zil\ilwi =1

Linear (arithmetic) pool.
M
7T|in(9) = Zw,‘ﬂ',‘(e)
i=1

* Natural, but /\posterior of mj;, is not the same as the weighted sum of posteriors 7;(6 | x).
Logarithmic (geometric) pool.

HMl ()~

Sol1 ,17r,u widu

Tog(0) =

e Combining first, then updating, is coherent with updating each prior then combining.
® Note: it is the prior that minimizes a weighted sum of Kullback—Leibler divergences:

M
m*(6) = arg min Z wiKL(m, 7)),  KL(m,m) = Jlog(ﬁ(ﬂ)/m(ﬂ))w(f))dG
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Different approaches

a~ m(a)
15} ‘ ()z~7r(“g | (k)
0|a,B~n0]a,B)

X 10~ po
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a ~ 7(a)

8la~ (8] a)
0la,B~m0]capB)
X |6~ pg

Different approaches

Likelihood / Frequentist model
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a~ 7m(a)
Bla~n(3]a)

0] a,8~m(0]a,B)
X |6~ pg

Different approaches

Empirical Bayes / Bayesian model
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a~ 7m(a)
fla~mn(B|a)

0] a,8~m(0]a,B)
X |6~ pg

Different approaches

Hierarchical Bayes
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a ~ m(a)
Bla~n(B|a)
0o, ~m(0]a,p)

X|9~po

Different approaches

Hierarchical Bayes
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