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Overview of the lecture

‚ First part: Organization of the course
‚ Motivation
‚ Course logistics
‚ Assessment

‚ Second part: Background from Probability and Statistics



World War II



Search for plane wreck



Science

D. Berry, Adaptive Bayesian Clinical Trials: The Past, Present, and
Future of Clinical Research, 2025



Uncertainty in modeling
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Uncertainty and probabilistic modeling

‚ Representing uncertainty with probabilities + Updating uncertainty

‚ Two types of uncertainty: aleatoric and epistemic

‚ Aleatoric uncertainty due to randomness
‚ we are not able to obtain observations which could reduce this uncertainty

‚ Epistemic uncertainty due to lack of knowledge
‚ we are able to obtain observations which can reduce this uncertainty
‚ two observers may have different epistemic uncertainty



Impact on society

Better modelling and quantification of uncertainty

Ñ better science

Ñ better informed decision making
in companies, government, and NGOs



Bayesian probability theory

expert information, previous experiments,...

data
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+
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Bayesian probability theory
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updated uncertainty
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ppỹ |✓qpp✓|yqd✓

Ó

updated uncertainty



Bayesian probability theory

expert information, previous experiments,... data
Œ

Ö

mathematical model
+

uncertainty with probabilities

+
Bayesian probability theory

pp✓|yq “ ppy |✓qpp✓q
ppyq
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Bayesian probability theory

‚ Based on Bayesian probability theory
‚ uncertainty is presented with probabilities
‚ probabilities are updated based on new information

‚ Thomas Bayes (170?–1761)
‚ English nonconformist, Presbyterian minister, (amateur) mathematician
‚ considered the problem of inverse probability

‚ Bayes did not invent all, but was first to solve problem of inverse probability in special case

‚ Laplace generalized the initial methods and applied it to scientific problems (e.g.,
astronomy)

‚ Modern Bayesian theory with rigorous proofs developed in 20th century

simpleproblemonly



Bayesian probability theory

A nice book about history: Sharon Bertsch McGrayne, The Theory That Would Not Die, 2012.



Term Bayesian used first time in mid 20th century

‚ Earlier there was just "probability theory"
‚ concept of the probability was not strictly defined, although it was close to modern Bayesian

interpretation
‚ in the end of 19th century there were increasing demand for more strict definition of

probability (mathematical and philosophical problem)
‚ In the beginning of 20th century frequentist view gained popularity

‚ accepts definition of probabilities only through frequencies
‚ does not accept inverse probability or use of prior
‚ gained popularity due to apparent objectivity and "cook book" like reference books

‚ R. A. Fisher used in 1950 first time term "Bayesian" to emphasize the difference to general term
"probability theory"

‚ term became quickly popular, because alternative descriptions were longer
‚ The probabilistic programming revolution started in early 1990’s

Kolmogorov



Bayesian Statistics course

‚ Probability distributions as model building blocks
‚ need to understand the math part (prereq.)
‚ continuous vs discrete (prereq.)
‚ observation model, likelihood, prior
‚ constructing bigger models

‚ Computation
‚ We need to be able to compute expectations

E✓|y rgp✓qs “
ª
pp✓|yqgp✓qd✓

‚ when analytic solutions are not available, computational approximations with finite number
of function evaluations

‚ importance sampling, Monte Carlo, Markov chain Monte Carlo, variational Bayes

‚ Not in this course: Diagnostics

marginalize conditioning



Bayesian Statistics course

‚ Bayesian inference : process of statistical learning via Bayes’ rule.

PpA|E q “ PpE |AqPpAq
PpE |AqPpAq ` PpE |AcqPpAcq “ PpE |AqPpAq

PpE q
or

pp✓|yq “ pp✓, yq
ppyq “ pp✓qppy |✓q

ppyq

‚ Bayesian methods are data analysis tools that are derived from the principles of Bayesian
inference.

‚ Bayesian methods provide:
‚ a rational method for updating beliefs in light of new information;
‚ parameter estimates with good statistical properties;
‚ predictions for missing data and forecasts of future data;
‚ a computational framework for model estimation, selection and validation.



Course Logistics

‚ Course administered through Quercus
‚ Syllabus, Lecture Notes, HW Problems, Quizzes, etc
‚ Also look at the course webpage

‚ Textbook: Bayesian Data Analysis by Gelman, Carlin, Stern, Dunson, Vehtari & Rubin.

‚ Communication
‚ For course content questions use Piazza or OH

‚ For personal issues use email (with [STAD91] in the subject) or office hours (TH 10am-1pm
@ IA 4064)

https://q.utoronto.ca/courses/429453
https://thibaultrandrianarisoa.netlify.app/courses/stad91/
https://sites.stat.columbia.edu/gelman/book/
https://sites.stat.columbia.edu/gelman/book/t


Assessment
Evaluation Weight Details

Weekly Quizzes (on Kahoot) 20% ‚ Best 8/10
‚ Cover previous week’s material
‚ At the end of the lecture

Homework Assignments 10% ‚ Two Homework Assignments (5% each)
‚ Date: After the midterm, TBD
‚ Pen & paper derivations + Coding

(Python/Numpy or R)

Term Test 25% ‚ Covers first 5 weeks
‚ Tentative Date: Feb 26 (wk 10)

Final 45% ‚ Cumulative
‚ Final exam period

No make-up Quizzes/Term Tests; if you miss midterm you must declare absence on ACORN & mark
will be replaced by final.

mm



Review of Key Concepts
Probability & inference topics you are expected to remember (quick recap)



Absolute continuity

Definition (absolute continuity)

Let P and µ be two �-finite measures on a measurable space pE , Eq. We say that P is
absolutely continuous with respect to µ, and write P ! µ, if

@A P E , µpAq “ 0 ùñ PpAq “ 0.

Radon–Nikodym theorem

If P ! µ, then there exists a positive measurable function p such that for every A P E ,

PpAq “
ª

A
ppxq dµpxq.

The function p is called the Radon-Nikodym derivative of P with respect to µ and is denoted

p “ dP
dµ

.
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Absolute continuity

Notation

One may write, suggestively,

PpAq “
ª

A
dPpxq “

ª

A

dPpxq
dµpxq dµpxq “

ª

A
ppxq dµpxq.

Discrete distributions

‚ On E “ t0, 1u, the Bernoullip✓q law has a density with respect to µ “ �0 ` �1:
ppxq “ p1 ´ ✓q1tx“0u ` ✓1tx“1u.

‚ On E “ t0, 1, . . . , nu, the Binomialpn, ✓q law is absolutely continuous with respect to the
counting measure µ “ ∞n

k“0 �k , with density

ppkq “
ˆ
n

k

˙
✓kp1 ´ ✓qn´k , k “ 0, 1, . . . , n.

‚ On E “ N˚, the geometric law with parameter p is absolutely continuous with respect to
the counting measure µ “ ∞

k•1 �k , with density
ppkq “ p1 ´ pqk´1p, k • 1.
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Absolute continuity

Continuous distributions

‚ The normal law N pµ,�2q has density with espect to Lebesgue measure on R:

x fi›Ñ 1?
2⇡�2

exp

"
´px ´ µq2

2�2

*
.

‚ The exponential law with rate � ° 0 has density (with respect to Lebesgue on R)

x fi›Ñ �e´�x
1tx•0u.



Classical inequalities

Markov’s inequality

Let X be a non-negative real random variable and a ° 0. Then

PpX • aq § ErX s
a

.

In particular, for a real random variable X and p P N˚, since x fiÑ xp is increasing on R`,

Pp|X | • aq “ Pp|X |p • apq § a´p Er|X |ps.
Chebyshev’s inequality

Let X be a real random variable and a ° 0. Then

P
`
|X ´ ErX s| • a

˘
§ VarpX q

a2 , VarpX q “ E
“
pX ´ ErX sq2‰

.



Classical inequalities

Hoeffding’s inequality

Let X1, . . . ,Xn be independent random variables, denote X n “ 1
n

∞n
k“1 Xk and suppose

ai § Xi § bi a.s.. Then for all " • 0,

P
`
X̄n ´ ErX̄ns • "

˘
§ exp

ˆ
´ 2"2n2
∞n

i“1pbi ´ ai q2

˙
.

TEXTS
1 x ̅ XD e 2exp Egitta



Classical inequalities

Example: Bernoulli sample mean

Let X1, . . . ,Xn be i.i.d. with Bernoullippq distribution and X̄n “ 1
n

∞n
i“1 Xi . For every " ° 0,

Chebyshev’s inequality:

P
`
|X̄n ´ p| ° "

˘
§ VarpX̄nq

"2
“ pp1 ´ pq

n"2
.

Since 0 § Xi § 1, we can improve this using Hoeffding’s inequality:

P
`
|X̄n ´ p| ° "

˘
§ 2 exp

`
´ 2n"2

˘
.

Chebyshev gives a bound of order 1{n, whereas Hoeffding yields an exponentially small bound
in n.

4 Varai Varix



Gamma and Beta distributions

Gamma distribution

For p,� ° 0, a random variable Z has Gammapp,�q distribution if it has density

fZ pxq “ �p

�ppq x
p´1e´�x

1tx•0u, �ppq “
ª 8

0
zp´1e´z dz .

‚ ErZ s “ p

�
, VarpZ q “ p

�2 .

‚ Special case: �p1,�q “ Expp�q.

Beta distribution

For a, b ° 0, a random variable X has Betapa, bq distribution if it has density

fX pxq “ 1
Bpa, bqx

a´1p1 ´ xqb´1
1t0§x§1u, Bpa, bq “

ª 1

0
za´1p1 ´ zqb´1 dz “ �paq�pbq

�pa ` bq .

‚ ErX s “ a

a ` b
, VarpX q “ ab

pa ` bq2pa ` b ` 1q .

‚ Special case: Betap1, 1q “ Ur0, 1s.



Gamma and Beta: main properties

Additivity of Gamma

If Y „ �pp,�q and Z „ �pq,�q are independent, then

Y ` Z „ �pp ` q,�q.

In particular, if E1, . . . ,En are i.i.d. Expp�q, then
∞n

i“1 Ei „ �pn,�q.

Scaling of Gamma

If Y „ �pp,�q and t ° 0, then tY „ �
`
p, �

t

˘
.

Gamma–Beta connection

If X „ �pa,�q and Y „ �pb,�q are independent, then X
X`Y „ Betapa, bq.

As a special case, if E1,E2 are i.i.d. Expp�q, then

E1

E1 ` E2
„ Ur0, 1s.

or I a 7 y
Betalba



Dirichlet distribution: definition and properties

Definition (Dirichlet distribution)

Let K • 2 and ↵1, . . . ,↵K ° 0. A random vector X “ pX1, . . . ,XK q has Dirichletp↵1, . . . ,↵K q
distribution if Xi ° 0,

∞K
i“1 Xi “ 1, and its density on the simplex is

fX px1, . . . , xK q “ �
`∞K

i“1 ↵i

˘
±K

i“1 �p↵i q

Kπ

i“1

x↵i´1
i , px1, . . . , xK q P SK “ tx P r0, 1sK :

ÿ

i

xi “ 1u

Key properties

‚ Beta as a special case: for K “ 2, Dirp↵1,↵2q is the Betap↵1,↵2q distribution.
‚ Marginals are Beta: if X „ Dirp↵1, . . . ,↵K q, then

Xi „ Beta

˜
↵i ,

Kÿ

k“1

↵k ´ ↵i

¸
, ErXi s “ ↵i∞K

k“1 ↵k

‚ Gamma representation: If Zi „ �p↵i ,�q are independent and Z “ ∞K
k“1 Zk , then

ˆ
Z1

Z
, . . . ,

ZK

Z

˙
„ Dirp↵1, . . . ,↵K q.



Modes of convergence of random variables

Convergence in probability

Let X1, . . . ,Xn, . . . and X be random variables taking values in Rd , defined on the same
probability space p⌦,F ,Pq. The sequence pXnq converges in probability to X , written Xn

P›Ñ X ,
if

@" ° 0, P
`
kXn ´ Xk ° "

˘
›››Ñ
nÑ8

0.

Convergence in L2

In the same setting, we say that pXnq converges in L2 to X , written Xn
L2

›Ñ X , if

E
”
kXn ´ Xk2

ı
›››Ñ
nÑ8

0.



Modes of convergence of random variables (II)

Almost sure convergence

With the same notation, the sequence pXnq converges almost surely to X , written Xn
a.s.››Ñ X if

P
´!
! P ⌦ : Xnp!q ›››Ñ

nÑ8
X p!q

)¯
“ 1.

Proposition

We have the implications

Xn
a.s.››Ñ X ùñ Xn

P›Ñ X ,

and

Xn
L2

›Ñ X ùñ Xn
P›Ñ X .



Convergence in distribution

Convergence in distribution / in law

Let pXnqn•1 and X be random variables with values in Rd . We say that Xn converges in
distribution (or in law) to X , written Xn

L›Ñ X , if for every bounded continuous function
f : Rd Ñ R,

E
“
f pXnq

‰
›››Ñ
nÑ8

E
“
f pX q

‰
.

Similarly, we say that pXnq converges in distribution to a probability measure P on Rd if

E
“
f pXnq

‰
›››Ñ
nÑ8

E
“
f pX q

‰

for X „ P and every bounded continuous function f .



Central Limit Theorem in Rd

Multivariate Central Limit Theorem

Let pXnq be a sequence of i.i.d. random variables with values in Rd , such that E
”
kX1k2

ı
† 8.

Let
µ “ ErX1s, ⌃ “ E

“
pX1 ´ ErX1sqpX1 ´ ErX1sqT

‰
.

Then
?
n

`
X n ´ µ

˘ L›Ñ N p0,⌃q.

T
E Xi



Continuous mapping theorem, Slutsky’s lemma

Continuous mapping theorem

Let Xn,X be random variables taking values in Rd and g : Rd Ñ Rk a continuous function.
‚ If Xn

L›Ñ X , then gpXnq L›Ñ gpX q.
‚ If Xn

P›Ñ X , then gpXnq P›Ñ gpX q.
‚ If Xn

a.s.››Ñ X , then gpXnq a.s.››Ñ gpX q.

Slutsky’s lemma

Let pXnq and pYnq be sequences of real-valued random variables, X a real-valued random
variable, and a P R.

Xn
L›Ñ X and Yn

P›Ñ a ùñ pXn,Ynq L›Ñ pX , aq.

Remark

For a constant a, we have
Zn

L›Ñ a ñ Zn
P›Ñ a.

_e



Statistical experiment and model

A statistical experiment consists of
‚ a random variable X defined on a probability space p⌦,F ,Pq with values in a measurable

space pE , Eq;
‚ a family of probability measures on pE , Eq, called a statistical model,

P “ tP✓ : ✓ P ⇥u,

where ⇥ is the parameter space.

In the frequentist approach one assumes that the law of X belongs to the model:

D✓0 P ⇥, X „ P✓0 .

Statistical inference aims at learning about ✓0 from an observation of X .

Erdforinstance



Sample model

In practice X is often an n-tuple of random variables

X “ pX1, . . . ,Xnq

Then the sample space and the model depend on n.

Example: n-sample model

When X “ pX1, . . . ,Xnq, one often works with the n-sample model

Pn “
 
Pbn
✓ : ✓ P ⇥

(
,

where

Pbn
✓ “ P✓ b ¨ ¨ ¨ b P✓looooooomooooooon

n times

.

This corresponds to assuming that X1, . . . ,Xn are i.i.d. with common distribution P✓.

Also often Xi are i i d

Example2 exeral

min



Identifiability and dominated models

Identifiable model

A statistical model P “ tP✓ : ✓ P ⇥u is identifiable if for all ✓, ✓1 P ⇥,

P✓ “ P✓1 ùñ ✓ “ ✓1.

Equivalently, the mapping ✓ fiÑ P✓ is injective. This guarantees that each distribution in the
model corresponds to a unique parameter value.

Dominated model

The model P “ tP✓ : ✓ P ⇥u is dominated if there exists a �-finite measure µ on E such that,
for all ✓ P ⇥, P✓ ! µ. Then every P✓ admits a density p✓ with respect to µ:

dP✓pxq “ p✓pxq dµpxq.

In what follows we often work with dominated, parametric models with ⇥ Ä Rd .

Ihave afamilyofdensities poOEQ



Example 1: Bernoulli model

Consider E “ t0, 1u and parameter space ⇥ “ p0, 1q. For ✓ P ⇥ let

P✓pX “ 1q “ ✓, P✓pX “ 0q “ 1 ´ ✓.

The model is

P “ tP✓ : ✓ P p0, 1qu.

‚ This is a dominated model with respect to the counting measure on t0, 1u; the density is

p✓pxq “ p1 ´ ✓q1t0upxq ` ✓ 1t1upxq.

‚ The model is identifiable: P✓ “ P✓1 implies ✓ “ P✓pX “ 1q “ P✓1 pX “ 1q “ ✓1.



Example 2: Gaussian model with unknown mean

Let E “ R, ⇥ “ R and fix �2 ° 0. For ✓ P ⇥ define P✓ as the normal law

P✓ “ N p✓,�2q.

The model is

P “ tN p✓,�2q : ✓ P Ru.

‚ This model is dominated by Lebesgue measure � on R with density

p✓pxq “ 1?
2⇡�2

exp

ˆ
´px ´ ✓q2

2�2

˙
.

‚ It is identifiable: equality of the densities (or distributions) for all x forces the means to be
equal.

if Po Po Po PO 0 0



Estimators in a statistical experiment

Estimator

Consider the statistical experiment pX ,Pq. An estimator of the parameter ✓ is a measurable
function

✓̂ “ ✓̂pX q

with values in the parameter space ⇥ (more precisely, ✓̂ is measurable from pE , Eq to
p⇥,Bp⇥qq, where Bp⇥q is the Borel �-algebra).

Sequence of experiments

In practice we often have a sequence of experiments pX pnq,Pnq, n “ 1, 2, . . .

This leads to a sequence of estimators p✓̂nq. e.g m is
thesample
size



Likelihood and maximum likelihood estimator

Assume a dominated model with respect to a measure µ: for each ✓ P ⇥,

dP✓pxq “ p✓pxq dµpxq.

Let X “ pX1, . . . ,Xnq „ Pbn
✓ . The joint density of X is

pbn
✓ px1, . . . , xnq “

nπ

i“1

p✓pxi q.

Viewed as a function of ✓ for the observed data X , this is the likelihood function

L✓pX q “
nπ

i“1

p✓pXi q.

Often we work instead with the log-likelihood

`✓pX q “ log L✓pX q “
nÿ

i“1

log p✓pXi q.



Maximum likelihood estimator (MLE)

Definition (MLE)

In a dominated model, a maximum likelihood estimator (MLE) is, when it exists, a value
✓̂pX q P ⇥ such that

✓̂pX q P argmax
✓P⇥

L✓pX q, or equivalently ✓̂pX q P argmax
✓P⇥

`✓pX q.

Example / exercise (Bernoulli model). In the Bernoulli model P “ tBp✓qbn : ✓ P r0, 1su,
show that the MLE of ✓ is unique and given by the empirical mean

✓̂pX q “ X n.



Maximum likelihood estimator (MLE)

PÉ x I Po Xi oxi n o i

logpo x I Xi logo 1 Xi log 1 01

log Eixi N Eixi log 1 0

8 Eif EYEf 0

it Ig nd
is bijective



Consistency and asymptotic normality

Consistency

Consider a sequence of experiments pX pnq,Pnq with

Pn “ tPbn
✓ : ✓ P ⇥u.

A sequence of estimators p✓̂nq is consistent if, for every ✓ P ⇥, when X pnq „ Pbn
✓ ,

✓̂n
`
X pnq˘ P›››Ñ

nÑ8
✓.

Asymptotic normality

In the same setting, p✓̂nq is asymptotically normal if for each ✓ P ⇥ there exists a symmetric
positive semi-definite matrix ⌃✓ such that, when X pnq „ Pbn

✓ ,

?
n

`
✓̂npX pnqq ´ ✓

˘ L›››Ñ
nÑ8

N p0,⌃✓q.

p

Em Xn Eg



Consistency and asymptotic normality

Exercise. Show that if p✓̂nq is asymptotically normal, then it is consistent.

con 018m É o 0

Slutsky Fn Fn Gm o 10 who 811

Apply g f Boy
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Quadratic risk of an estimator

Definition (Quadratic risk)

Let pX ,Pq be a statistical experiment with P “ tP✓ : ✓ P ⇥u and let ✓̂ be an estimator.
The quadratic risk of ✓̂ at ✓ is

Rp✓, ✓̂q “ E✓

„���✓̂pX q ´ ✓
���

2
⇢

“
ª

E

���✓̂pxq ´ ✓
���

2
dP✓pxq.

Example: Scalar parameter case

When ⇥ Ä R, the quadratic risk reduces to

Rp✓, ✓̂q “ E✓

”`
✓̂pX q ´ ✓

˘2
ı

“
ª

E

`
✓̂pxq ´ ✓

˘2 dP✓pxq.

A "good" estimator typically has small quadratic risk, but remember that Rp✓, ✓̂q is a function
of ✓ and may be small for some parameter values and large for others.



Bias–variance decomposition

Proposition (Bias–variance decomposition)

Let pX ,Pq be a statistical experiment with P “ tP✓ : ✓ P ⇥u and let ✓̂ be an estimator. For
every ✓ P ⇥, if X „ P✓,

Rp✓, ✓̂q “ E✓

„���✓̂pX q ´ E✓r✓̂pX qs
���

2
⇢

`
���E✓r✓̂pX qs ´ ✓

���
2
.

The function

✓ fi›Ñ E✓r✓̂pX qs ´ ✓

is called the bias of ✓̂.

Scalar parameter case

If ⇥ Ä R, then

Rp✓, ✓̂q “ Var✓
`
✓̂pX q

˘
`

`
E✓r✓̂pX qs ´ ✓

˘2
.



Example: Bernoulli model and empirical mean

Setting

Let pX ,Pq with P “ tBp✓qbn : ✓ P r0, 1su, where X “ pX1, . . . ,Xnq and Xi are i.i.d.
Bernoulli(✓).

A natural estimator of ✓ is the empirical mean

✓̂npX q “ X n “ 1
n

nÿ

i“1

Xi .

‚ By the (strong) law of large numbers, ✓̂npX q Ñ ✓ almost surely, hence ✓̂n is consistent.
‚ By the central limit theorem,

?
np✓̂npX q ´ ✓q L›Ñ N p0, ✓p1 ´ ✓qq, so ✓̂n is asymptotically

normal.
‚ Since E✓r✓̂npX qs “ ✓, the estimator is unbiased and

Rp✓, ✓̂nq “ E✓

”`
✓̂npX q ´ ✓

˘2
ı

“ Var✓p✓̂npX qq “ ✓p1 ´ ✓q
n

.



Risk and probability of large error

For any estimator ✓̂ and any " ° 0, the quadratic risk controls the probability of a large error:

P✓

´ˇ̌
✓̂pX q ´ ✓

ˇ̌
• "

¯
§

E✓

”`
✓̂pX q ´ ✓

˘2
ı

"2
“ Rp✓, ✓̂q

"2
.

This follows from Markov’s (or Chebyshev’s) inequality.

Thus, a small quadratic risk implies that ✓̂pX q is close to ✓ with high probability.



Example: Gaussian mean, two estimators

Setting

Let X1, . . . ,Xn be i.i.d. N p✓, 1q with ✓ P R.
We compare two estimators:

‚ a constant estimator ✓̃n “ ✓0 for some fixed ✓0 P R.

Rp✓, ✓̃nq “ E✓

“
p✓0 ´ ✓q2‰

“ p✓ ´ ✓0q2.

This risk is zero at ✓ “ ✓0, but positive elsewhere and does not decrease with n.

‚ the empirical mean ✓̂npX q “ X n “ 1
n

∞n
i“1 Xi , for which E✓r✓̂npX qs “ ✓ (unbiased) and

Rp✓, ✓̂nq “ Var✓p✓̂npX qq “ 1
n
.

The risk is independent of ✓ and decreases at rate 1{n.



Consistency and asymptotic normality

Exercise. For X „ Binpn, ✓q and ✓̂ “ X {n, show that Rp✓, ✓̂q § 1{p4nq for all ✓ P r0, 1s.
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Exact confidence intervals and regions

Let ↵ ° 0.

Definition (exact confidence interval / region)

‚ Case ⇥ Ä R. A (random) interval I pX q “ rapX q, bpX qs is a confidence interval of level
(at least) 1 ´ ↵ if

@✓ P ⇥, P✓

`
✓ P I pX q

˘
• 1 ´ ↵.

‚ Case ⇥ Ä Rd
. A random subset RpX q Ä ⇥ is a confidence region of level (at least) 1 ´↵

if

@✓ P ⇥, P✓

`
✓ P RpX q

˘
• 1 ´ ↵.

BThe interval I pX q cannot depend on the unknown parameter ✓; it may only depend on
known quantities (such as ↵, the sample size n, and the data X ).



Example: normal mean, exact confidence interval

‚ Gaussian model
We observe X “ pX1, . . . ,Xnq i.i.d. with Xi „ N p✓, 1q, ✓ P R. Let
✓̂pX q “ X n “ n´1 ∞n

i“1 Xi . Then
?
n pX n ´ ✓q „ N p0, 1q.

Denote by � the c.d.f. of N p0, 1q and set q↵ “ �´1p1 ´ ↵{2q, so that
Pp|N p0, 1q| ° q↵q “ ↵.

‚ Resulting confidence interval
We have

P✓

´ˇ̌
ˇ
?
n

`
✓̂pX q ´ ✓

˘ˇ̌
ˇ ° q↵

¯
“ ↵.

Equivalently,

I pX q “
„
✓̂pX q ˘ q↵?

n

⇢

is an exact level 1 ´ ↵ confidence interval for ✓.



Example: normal mean, exact confidence interval

‚ Gaussian model
We observe X “ pX1, . . . ,Xnq i.i.d. with Xi „ N p✓, 1q, ✓ P R. Let
✓̂pX q “ X n “ n´1 ∞n

i“1 Xi . Then
?
n pX n ´ ✓q „ N p0, 1q.

Denote by � the c.d.f. of N p0, 1q and set q↵ “ �´1p1 ´ ↵{2q, so that
Pp|N p0, 1q| ° q↵q “ ↵.

‚ Resulting confidence interval
We have

P✓

´ˇ̌
ˇ
?
n

`
✓̂pX q ´ ✓

˘ˇ̌
ˇ ° q↵

¯
“ ↵.

Equivalently,

I pX q “
„
✓̂pX q ˘ q↵?

n

⇢

is an exact level 1 ´ ↵ confidence interval for ✓.



Example: normal mean, exact confidence interval

‚ Gaussian model
We observe X “ pX1, . . . ,Xnq i.i.d. with Xi „ N p✓, 1q, ✓ P R. Let
✓̂pX q “ X n “ n´1 ∞n

i“1 Xi . Then
?
n pX n ´ ✓q „ N p0, 1q.

Denote by � the c.d.f. of N p0, 1q and set q↵ “ �´1p1 ´ ↵{2q, so that
Pp|N p0, 1q| ° q↵q “ ↵.

‚ Resulting confidence interval
We have

P✓

´ˇ̌
ˇ
?
n

`
✓̂pX q ´ ✓

˘ˇ̌
ˇ ° q↵

¯
“ ↵.

Equivalently,

I pX q “
„
✓̂pX q ˘ q↵?

n

⇢

is an exact level 1 ´ ↵ confidence interval for ✓.
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Asymptotic confidence intervals

Sometimes the finite-sample distribution of an estimator is unknown, but its limiting
distribution as n Ñ 8 is known. This leads to asymptotic confidence intervals/regions.

Definition (asymptotic confidence interval/region)

‚ Case ⇥ Ä R. A random interval I pX pnqq is an asymptotic confidence interval of level (at
least) 1 ´ ↵ if

@✓ P ⇥, lim inf
nÑ8

P✓

`
✓ P I pX pnqq

˘
• 1 ´ ↵.

‚ Case ⇥ Ä Rd
. A random set RpX pnqq Ä ⇥ is an asymptotic confidence region of level (at

least) 1 ´ ↵ if

@✓ P ⇥, lim inf
nÑ8

P✓

`
✓ P RpX pnqq

˘
• 1 ´ ↵.



General construction from an asymptotically normal

estimator

Proposition (asymptotic CI from asymptotic normality)

Assume ⇥ Ä R and let ✓̂n “ ✓̂npX q be an estimator such that

?
n

`
✓̂n ´ ✓

˘ L›››Ñ
nÑ8

N
`
0,�2p✓q

˘
,

where the function ✓ fiÑ �2p✓q is continuous.
Let q↵ ° 0 satisfy

P
`
|N p0, 1q| § q↵

˘
“ 1 ´ ↵ (so q↵ “ �´1p1 ´ ↵{2q).

Define

I pX q “
«
✓̂npX q ´ q↵ �p✓̂npX qq?

n
, ✓̂npX q ` q↵ �p✓̂npX qq?

n

�
.

Then I pX q is an asymptotic confidence interval of level exactly 1 ´ ↵.



General construction from an asymptotically normal

estimator
proof: consistency
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Conditional distribution (discrete case)

Definition (discrete conditional law)

Let X and Y be discrete random variables on a probability space p⌦,F ,Pq, with values
respectively in sets E and F . For x P E such that PpX “ xq ° 0, the conditional distribution of
Y given X “ x , denoted LpY | X “ xq, is defined for all y P F by

PpY “ y | X “ xq “ PpY “ y ,X “ xq
PpX “ xq .

This defines, for each fixed x , a probability distribution on F .

Bayes rule



Joint densities and marginals

Let
‚ pE , Eq and pF ,Fq be measurable spaces;
‚ ↵ a �-finite positive measure on pE , Eq, and � a �-finite positive measure on pF ,Fq;
‚ X an E -valued random variable and Y an F -valued random variable.

Assume the pair pX ,Y q has a joint density hpx , yq with respect to ↵ b �, i.e.

dPpx , yq “ hpx , yq d↵pxq d�pyq.

The marginal law of X is the (probability) density

f pxq “
ª

F
hpx , yq d�pyq,

and the marginal law of Y is the (probability) density

gpyq “
ª

E
hpx , yq d↵pxq.
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Conditional density (continuous case)

Definition (conditional density for fixed x)

Assume f pxq ° 0 for some x P E . The conditional law of Y given X “ x , denoted
LpY | X “ xq, is the probability measure on F with density (w.r.t. �)

gxpyq “ hpx , yq
f pxq “ hpx , yqª

F
hpx , yq d�pyq

.

We may sometimes write gpy | xq instead of gxpyq when there is no risk of confusion.

Remark

For points where f pxq “ 0 we can define gx arbitrarily (e.g. 0); these x typically form a set of
LpX q-measure zero, so they do not affect integrals.



Random conditional density and joint density factorization

Random conditional density

By extension, we define the conditional density of Y given X as the random density

gX pyq “ gpy | X q “

$
&

%

hpX , yq
f pX q , f pX q ° 0,

0, f pX q “ 0.

Since f pX q ° 0 almost surely, one usually just writes

gX pyq “ hpX , yq
f pX q .



Conditional expectation via conditional density

Definition (conditional expectation)

Let ' : F Ñ R be measurable with Er'pY qs † 8. The conditional expectation of 'pY q given
X is

Er'pY q | X s “
ª

F
'pyq gpy | X q d�pyq.

This is a random variable measurable with respect to �pX q.

Law of total expectation

For any measurable  : E ˆ F Ñ R such that  pX ,Y q is integrable,

Er pX ,Y qs “ E
“
Er pX ,Y q | X s

‰
.

In particular, if  pX ,Y q “  1pX q 2pY q with integrable  1pX q and  2pY q, then

Er 1pX q 2pY qs “ Er 1pX qEr 2pY q | X ss .



Conditional expectation as best L2
predictor

Projection property (orthogonality)

In the previous setting, let Y be square integrable: ErY 2s † 8. Then

inf
':EÑR, Er'pXq2s†8

E
“
pY ´ 'pX qq2‰

“ E
“
pY ´ ErY | X sq2‰

.

Thus ErY | X s is the best mean-square predictor of Y among all (square integrable)
functions of X .

Proof:
For any measurable ' : E Ñ R with Er'pX q2s † 8,

E
“
pY ´ 'pX qq2‰

“ E
“
pY ´ ErY | X sq2‰

` E
“
pErY | X s ´ 'pX qq2‰

.

The cross-term is zero because

ErpY ´ ErY | X sqpErY | X s ´ 'pX qqs “ E
“
E

“
Y ´ ErY | X s | X

‰
pErY | X s ´ 'pX qq

‰
“ 0.



Conditional expectation as best L2
predictor

Projection property (orthogonality)

In the previous setting, let Y be square integrable: ErY 2s † 8. Then

inf
':EÑR, Er'pXq2s†8

E
“
pY ´ 'pX qq2‰

“ E
“
pY ´ ErY | X sq2‰

.

Thus ErY | X s is the best mean-square predictor of Y among all (square integrable)
functions of X .
Proof:
For any measurable ' : E Ñ R with Er'pX q2s † 8,

E
“
pY ´ 'pX qq2‰

“ E
“
pY ´ ErY | X sq2‰

` E
“
pErY | X s ´ 'pX qq2‰

.

The cross-term is zero because

ErpY ´ ErY | X sqpErY | X s ´ 'pX qqs “ E
“
E

“
Y ´ ErY | X s | X

‰
pErY | X s ´ 'pX qq

‰
“ 0.



Square integrability of ErY | X s

To justify the previous result we need E
“
ErY | X s2

‰
† 8.

By the conditional Jensen inequality,

E
“
ErY | X s2

‰
§ E

“
ErY 2 | X s

‰
“ ErY 2s † 8.

Hence ErY | X s is square integrable and the projection property makes sense in L2.



Frequentist approach

In the frequentist approach, we assume that there exists a true but unknown parameter value
✓0 P ⇥ such that the data X follow the law P✓0 :

D ✓0 P ⇥ s.t. X „ P✓0 .

Gaussian model

Let

X “ pX1, . . . ,Xnq, P “
 
N p✓, 1qbn : ✓ P R

(
.

The frequentist assumption is that for some ✓0 P R, the data are i.i.d. N p✓0, 1q. One can then
estimate ✓0 by the empirical mean X̄n; by the law of large numbers, X̄n

P›Ñ ✓0.

‚ Estimation: construct an estimator ✓̂pX q close to ✓0.
‚ Confidence sets: build random sets RpX q Ä ⇥ with ✓0 P RpX q with high probability

under P✓0 .
‚ Tests: answer "true/false" to a property of ✓0 via tests 'pX q P t0, 1u.



Bayesian approach: intuition

In the Bayesian approach, all unknown quantities are modeled as random variables.
Prior and posterior

‚ Before observing data, our uncertainty about ✓ is described by a prior distribution ⇧0 on
⇥.

‚ After observing X , we update this prior using Bayes’ formula to obtain the posterior

distribution ⇧p ¨ | X q.
The posterior combines:

‚ prior knowledge (or belief) about ✓;
‚ the information contained in the data X .

Coin tossing: frequentist vs Bayesian view

Let ✓ P r0, 1s be the probability of "heads".
‚ Frequentist: ✓ is fixed; with many tosses, the empirical frequency X̄n converges to ✓ (LLN,

CLT).
‚ Bayesian: before any toss, we put a prior on ✓ (e.g. uniform on r0, 1s). Each new

observation updates the prior to a posterior that reflects both prior belief and data.


