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Overview of the lecture

® First part: Organization of the course

® Motivation
® Course logistics
® Assessment

® Second part: Background from Probability and Statistics
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Uncertainty in modeling

Data




Uncertainty in modeling

Posterior mean

7.5 °




Uncertainty in modeling

Predictive distribution given posterior mean




Uncertainty in modeling

Posterior draws

7.5 °




Uncertainty in modeling

Posterior draws and predictive distribution




Uncertainty and probabilistic modeling

Representing uncertainty with probabilities + Updating uncertainty

Two types of uncertainty: aleatoric and epistemic

Aleatoric uncertainty due to randomness
® we are not able to obtain observations which could reduce this uncertainty

Epistemic uncertainty due to lack of knowledge

® we are able to obtain observations which can reduce this uncertainty
® two observers may have different epistemic uncertainty



Impact on society

Better modelling and quantification of uncertainty
— better science

— better informed decision making
in companies, government, and NGOs



Bayesian probability theory

expert information, previous experiments,...
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Bayesian probability theory

expert information, previous experiments,... data
N\ /
mathematical model Bayesian probability theory
+ + y\9 ()
uncertainty with probabilities /Y
?osHy p(ly) = f (710)p(0]y)d0

M JT\QYU}@‘\



Bayesian probability theory

expert information, previous experiments,... data
N\ /
mathematical model Bayesian probability theory
0)p(6
: + e + p(fly) = Py 19)p(0)
uncertainty with probabilities p(y)

p(7ly) = j p(716)p(6ly)do

updated uncertainty



Bayesian probability theory

Based on Bayesian probability theory

® uncertainty is presented with probabilities
® probabilities are updated based on new information

Thomas Bayes (1707-1761)

® English nonconformist, Presbyterian minister, (amateur) mathematician
® considered theQDrobIem of inverse probability

24%\{(@ KKCDQF ON\%

Bayes did not invent all, but was first to solve problem of inverse probability in special case

Laplace generalized the initial methods and applied it to scientific problems (e.g.,
astronomy)

Modern Bayesian theory with rigorous proofs developed in 20th century



Bayesian probability theory

A nice book about history: Sharon Bertsch McGrayne, The Theory That Would Not Die, 2012.

the theory f&%

<&t that Would

-not die /43"

how bayes’ r cracked
*=<. the enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy




Term Bayesian used first time in mid 20th century

Earlier there was just "probability theory"

® concept of the probability was not strictly defined, although it was close to modern Bayesian
interpretation

® in the end of 19th century there were increasing demand for more strict definition of
probability (mathematical and philosophical problem) —> }(@

pﬁqaﬂu\ou
In the beginning of 20th century frequentist view gained popularity

® accepts definition of probabilities only through frequencies
® does not accept inverse probability or use of prior
® gained popularity due to apparent objectivity and "cook book" like reference books

R. A. Fisher used in 1950 first time term "Bayesian" to emphasize the difference to general term
"probability theory"

® term became quickly popular, because alternative descriptions were longer

The probabilistic programming revolution started in early 1990’'s



Bayesian Statistics course

® Probability distributions as model building blocks

® need to understand the math part (prereq.)
® continuous vs discrete (prereq.)

® observation model, likelihood, prior

® constructing bigger models

e Computation MUy Y\ QQ;ZQ/

®* We need to be able to compute expectations

/

Eo)y[2(0)] = J p(6ly)g(0)do

® when analytic solutions are not available, computational approximations with finite number
of function evaluations
® importance sampling, Monte Carlo, Markov chain Monte Carlo, variational Bayes

* Not in this course: Diagnostics



Bayesian Statistics course

® Bayesian inference : process of statistical learning via Bayes' rule.

P(E|A)P(A) P(E|A)P(A)
P(AIE) = P(E|AYP(A) + P(E|A9)P(Ac)  P(E)
p(6ly) = p(0.y) _ p(6)p(y|0)

® Bayesian methods are data analysis tools that are derived from the principles of Bayesian
inference.

® Bayesian methods provide:

® a rational method for updating beliefs in light of new information;

® parameter estimates with good statistical properties;

® predictions for missing data and forecasts of future data;

® a computational framework for model estimation, selection and validation,



Course Logistics

® Course administered through Quercus

® Syllabus, Lecture Notes, HW Problems, Quizzes, etc
® Also look at the course webpage

® Textbook: Bayesian Data Analysis by Gelman, Carlin, Stern, Dunson, Vehtari & Rubin.

Bayesian Data Analysis
Third Edition

® Communication
® For course content questions use Piazza or OH

® For personal issues use email (with [STAD91] in the subject) or office hours (TH 10am-1pm
O IA 4064)


https://q.utoronto.ca/courses/429453
https://thibaultrandrianarisoa.netlify.app/courses/stad91/
https://sites.stat.columbia.edu/gelman/book/
https://sites.stat.columbia.edu/gelman/book/t

Assessment

Evaluation Weight | Details
Weekly Quizzes (on Kahoot) 20% * Best 8/10

® Cover previous week's material

® At the end of the lecture

Homework Assignments 10% ® Two Homework Assignments (5% each)
e Date: After the midterm, TBD

® Pen & paper derivations + Coding
(Python/Numpy or R)

Term Test 25% e Covers first 5 weeks
® Tentative Date: Feb 26W
Final 45% e Cumulative

® Final exam period

No make-up Quizzes/Term Tests; if you miss midterm you must declare absence on ACORN & mark
will be replaced by final.



Review of Key Concepts

Probability & inference topics you are expected to remember (quick recap)



Absolute continuity

Definition (absolute continuity)

Let P and p be two o-finite measures on a measurable space (E,£). We say that P is
absolutely continuous with respect to i, and write P « p, if

VAe&, uA) =0 = P(A)=0.



Absolute continuity

Definition (absolute continuity)

Let P and p be two o-finite measures on a measurable space (E,£). We say that P is
absolutely continuous with respect to i, and write P « p, if

VAe&, uA) =0 = P(A)=0.

Radon—Nikodym theorem
If P « u, then there exists a positive measurable function p such that for every A € &,

P(A) = | P00 dut).

The function p is called the Radon-Nikodym derivative of P with respect to i and is denoted

dP

PZE-



Absolute continuity

Notation
One may write, suggestively,

P(A) = | aP() = | S () = | plo) dito

Discrete distributions
®* On E = {0, 1}, the Bernoulli(#) law has a density with respect to u = dp + d1:
p(x) = (1 = 0)1—0y + 011y



Absolute continuity

Notation
One may write, suggestively,

P(A) = | aP() = | S () = | plo) dito

Discrete distributions
®* On E = {0, 1}, the Bernoulli(#) law has a density with respect to u = dp + d1:
p(x) = (1 = 0)1—0y + 011y
® On E={0,1,...,n}, the Binomial(n, #) law is absolutely continuous with respect to the
counting measure 1 = >, _, 0k, with density

p(k) = (Z) 0% (1 — )"k, k=0,1,...,n.



Absolute continuity

Notation
One may write, suggestively,

P(A) = | aP() = | S () = | plo) dito

Discrete distributions
®* On E = {0, 1}, the Bernoulli(#) law has a density with respect to u = dp + d1:
p(x) = (1 = 0)1—0y + 011y
® On E={0,1,...,n}, the Binomial(n, #) law is absolutely continuous with respect to the

counting measure 1 = >, _, 0k, with density
n

p(k) = (k>9k(1 —6)"k, k=0,1,...,n.

® On E = N*, the geometric law with parameter p is absolutely continuous with respect to
the counting measure p = >}, dx, with density
p(k) =(1—p)tp,  k=1.



Absolute continuity

Continuous distributions

® The normal law N (1, 0?) has density with espect to Lebesgue measure on R:

1 (x = p)?
X —> expyl ————" .
A 2o 202

® The exponential law with rate A > 0 has density (with respect to Lebesgue on R)

X —> )\e_kxl{x>0}.



Classical inequalities

Markov's inequality
Let X be a non-negative real random variable and a > 0. Then

E[X]

P(X > a) <

In particular, for a real random variable X and p € N*, since x — xP is increasing on R,
P(IX| > a) = P(IX[P > &) < a PE[|X]?].
Chebyshev's inequality

Let X be a real random variable and a > 0. Then

P(X — E[X]| = 2) < LX)

ot Var(X) = E[(X — E[X])?].



Classical inequalities

Hoeffding's inequality

Let Xi,...,X, be independent random variables, denote X, = %2221 X and suppose
ai < X; < b; a.s.. Then for all e > 0,

P(X, — E[X,] = ¢) < exp (— S 2%’ a,-)2) .

LA i—1(bi —
= SR .
2€n M
1©.( 13X,~EDX1[2e) < 200p | - s




Classical inequalities

Example: Bernoulli sample mean
Let X1,..., X, be i.i.d. with Bernoulli(p) distribution and X, = L3 L X;. For every € > 0,

Chebyshev’s inequality: TV@FCSZ/;)):’/[‘ \}Qr()(/l)
M

Var(X,) _ p(l— p).

]P)(])_(,, —p| > 5) = —

IN

Since 0 < X; < 1, we can improve this using Hoeffding's inequality:

P(|X, — p| >¢) < 2exp (—2ne®).

Chebyshev gives a bound of order 1/n, whereas Hoeffding yields an exponentially small bound
in n.



Gamma and Beta distributions

Gamma distribution
For p, A\ > 0, a random variable Z has Gamma(p, \) distribution if it has density

)\p 1 —)\x OO 1 —Z
fz(x) = 0 xP~ 10, [(p) = zP~ dz.

e B[Z] =P varz)= 2.
A A2 ; 1
® Special case: T(1,\) = Exp(}). d

Beta distribution @
For a, b > 0, a random variable X has Beta(a, b) dlstrlbut|on |f it has den5|ty
1 —1 b—1 o b—1 r(a)r(b)
() = g 10" Loccry.  Blab :fo 21—tz = p O
e E[X] = —— Var(X) = ab

a+b’ (a+b)2(a+b+1)
* Special case: Beta(1,1) = U[0, 1].




Gamma and Beta: main properties
Additivity of Gamma
If Y ~T(p,\) and Z ~ (g, \) are independent, then
Y+ Z~T(p+aq,)N).
In particular, if Eq, ..., E, are i.i.d. Exp()\), then .7 E; ~ [(n, \).

Scaling of Gamma
If Y ~T(p,\) and t >0, then tY ~ T (p, 2).

Gamma—Beta connection >/ \f (a\
If X ~T(a,\) and Y ~ (b, \) are independent, then % ~ Beta(a, ). ——— n %@JX ) &

As a special case, if Ey, E; are i.i.d. Exp()\), then
Eq
Ei+ E

~ U[0,1].



Dirichlet distribution: definition and properties

Definition (Dirichlet distribution)
Let K > 2 and aq,...,akx > 0. A random vector X =
distribution if X; > 0, Z,K:l Xi =1, and its density on the simplex is

F(Zfilai) : Qi1 x1 e Sk = {x € [0, 1 xi =1
H,K=1F(ozi);11’ B | ZI |

(X1,...,Xk) has Dirichlet(a, . .., ak)

fx(Xl, e ,XK) =

Key properties
* Beta as a special case: for K = 2, Dir(az, ay) is the Beta(ag, az) distribution.

* Marginals are Beta: if X ~ Dir(ag,...,ak), then
( K a.
X; ~ Beta| aj, 2 Qe — oz,-) : E[Xi] = K—'
k=1 2ik—1 Ok

* Gamma representation: If Z; ~ I'(«;, A) are independent and Z = Zszl Zk, then

7 Z :
(71,,7K> ~ Dir(ay, ..., ak).



Modes of convergence of random variables

Convergence in probability
Let Xi,...,X,,... and X be random variables taking values in R9, defined on the same
probability space (2, F,IP). The sequence (X,) converges in probability to X, written X, LN X,
if

Ve > 0, P(||X, — X|| >e) —— 0.

n—0o0

Convergence in L2

2
In the same setting, we say that (X,) converges in L? to X, written X, L, X, if

E| X, — X|?| —>0.

n— 00



Modes of convergence of random variables (I1)

Almost sure convergence
With the same notation, the sequence (X,) converges almost surely to X, written X, = X if

P ({w eQ: X,(w) — X(w)}) = 1.

n—a0
Proposition
We have the implications
X, 225 X = X, 5 X,
and

X 5 x — x5 X



Convergence in distribution

Convergence in distribution / in law
Let (X,)n,>1 and X be random variables with values in RY. We say that X, converges in

distribution (or in law) to X, written X, £, X, if for every bounded continuous function
f:RY— R,

E[£(X,)] —— E[£(X)].

n—o0

Similarly, we say that (X,) converges in distribution to a probability measure P on RY if

E[f(X,)] —— E[f(X)]

n—0o0

for X ~ P and every bounded continuous function f.



Central Limit Theorem in R¢

Multivariate Central Limit Theorem
Let (X,) be a sequence of i.i.d. random variables with values in R9, such that E [HX1H2] < 0.

Let
p=EX],  E=E[X -EX]X -EX])'].

Then
Vi (Xn— 1) S N(0,5).
L
. V
-4 =
M=

p—



Continuous mapping theorem, Slutsky's lemma

Continuous mapping theorem
Let X,,, X be random variables taking values in R? and g : R — R* a continuous function.

o If X, 5> X, then g(X,) = g(X).
* If X, > X, then g(X,) = g(X).
o If X, 2> X, then g(X,) 2= g(X).

Slutsky's lemma

Let (X,) and (Y},) be sequences of real-valued random variables, X a real-valued random
variable, and a € R.

X, 5 X and Y, 5 a = (X, Y, > (X,a).

Remark
FOI’ a constant a, we have



Statistical experiment and model

A statistical experiment consists of

® a random variable X defined on a probability space (2, 7, P) with values in a measurable
space (E,&);

* a family of probability measures on (E, &), called a statistical model,

P = {Pg . 6 GPJ},
where © is the parameter space. = \%d foj\\/rU&b{/ﬂ &

In the frequentist approach one assumes that the law of X belongs to the model:
390 € @, X ~ Pgo.

Statistical inference aims at learning about 6y from an observation of X.



Sample model
Mso, ofben 7 ave 5id.
EUC"N'\PQL 2 [ c><4,y,,)/
N
Then the sample space and the model depend on n. (X,,) )VA)J

In practice X is often an n-tuple of random variables

X = (X1,..., X,)

Example: n-sample model
When X = (Xi,...,X,), one often works with the n-sample model

P, = {P?”:HE@},
where

P =Py® - ® Py
n times

This corresponds to assuming that Xy, ..., X, are i.i.d. with common distribution Pj.



Identifiability and dominated models

|dentifiable model
A statistical model P = {Py : 8 € O} is identifiable if for all 6,6’ € ©,

Pg = ng — 0 = 9’.

Equivalently, the mapping 6 — Py is injective. This guarantees that each distribution in the
model corresponds to a unique parameter value.

Dominated model
The model P = {Py : 6 € ©} is dominated if there exists a o-finite measure p on E such that,

for all 8 € ©, Py « . Then every Py admits a density py with respect to pu:

dPy(x) = po(x) du(x).

In what follows we often work with dominated, parametric models with © < RY.

( f{m}e Q 6%\% ag Olﬁw\ﬁ)i'@é f?@i 0¢ @\f



Example 1: Bernoulli model

Consider E = {0,1} and parameter space © = (0,1). For 6 € © let

The model is
P={Py:60€e(0,1)}.
® This is a dominated model with respect to the counting measure on {0, 1}; the density is

po(x) = (1 —0)Ly(x) + 6 113 (x).

* The model is identifiable: Py = Py implies § = Pp(X =1) = Pp(X =1) =¢".



Example 2: Gaussian model with unknown mean

Let E =R, © = R and fix 62 > 0. For € © define Py as the normal law
Py = N(0,0°).
The model is

P ={N(0,0°) :0 R}

® This model is dominated by Lebesgue measure X\ on R with density

po(x) = — eXP(— x = 9)2) -

V2o 202
* |t is identifiable: equality of the densities (or distributions) for all x forces the means to be
equal.

{ ?@f?e’/ Po= e => q-6’



Estimators in a statistical experiment

Estimator
Consider the statistical experiment (X, P). An estimator of the parameter 6 is a measurable
function

0 = 0(X)

with values in the parameter space © (more precisely, 0 is measurable from (E,&) to

(©,B(©)), where B(©) is the Borel o-algebra).

Sequence of experiments
In practice we often have a sequence of experiments (X(" P,), n=1,2,...

L eq., M is %SW\P@

This leads to a sequence of estimators (,). Py
\ Z



Likelihood and maximum likelihood estimator

Assume a dominated model with respect to a measure u: for each 6 € ©,

dPy(x) = po(x) du(x).

Let X = (Xq,...,X,) ~ P®". The joint density of X is
0

p@ X1,... HPG X/

Viewed as a function of 0 for the observed data X, thls is the likelihood function

=] [ po(X
i=1

Often we work instead with the log-likelihood

{5(X) = 108 Ly(X) = 3" log py (X



Maximum likelihood estimator (MLE)

Definition (MLE)
IAn a dominated model, a maximum likelihood estimator (MLE) is, when it exists, a value
6(X) € © such that

0(X) e argmax Ly(X), or equivalently 0(X) e argmax £y (X).
S(S) ISS)

Example / exercise (Bernoulli model). In the Bernoulli model P = {B(6)®": § € [0, 1]},
show that the MLE of 6 is unique and given by the empirical mean

0(X) = X,.



R Maximum likelihood estimator (MLE)
Dg (X) = 0 Fécx;]:ﬁ o (4-6)
\ - :/’

A
QO@& §§Jm(><) = = LX‘] Qdaaé + (1-X5) QacQ{ (L@)]
= N N
:Fog@%*\ * EN’ ZX)] Qog@b@)
I\ ) = A
CACI S I IM/;% 1
o0 S T -6 _
=" 6 /(fé — Z X:(\ wa{ o:lf%%
— 7 N_ T — ( A
Z, % N-gZ A-6 X ‘s Qjechve
| N



Consistency and asymptotic normality

Consistency
Consider a sequence of experiments (X("),P,) with

P = {PP": 0 €O}

A sequence of estimators (0,) is consistent if, for every 6 € ©, when X(" ~ Py

A, (X (™) L}\@M,/ => émcx@)) rd_i;j@

n—o0
M>5po

e K
Asymptotic normality

In the same setting, (0,) is asymptotically normal if for each 0 € © there exists a symmetric
positive semi-definite matrix £, such that, when X(" ~ P?”,

Vi (0,(XM) — ) —=— N(0, Zy).

n—0o0



Consistency and asymptotic normality

Exercise. Show that if (QA,,) is asymptotically normal, then it is consistent.

Wby =5 (2 5T (Ba-p)) Yo (0,400, %))

R R Wl R canFnveos  wasowm Foren |
AW% ?Y éw ) x= 366 v %

A i AN\ Q as Oica
@N\~9 ) 0 = ®/VL —E >0 coms\%i“



Quadratic risk of an estimator

Definition (Quadratic risk)

Let (X,P) be a statistical experiment with P = {Py : 6 € ©} and let 0 be an estimator.
The quadratic risk of 6 at @ is

R(@,é):Ee[He —9“] JH@ —9” dPy(x

Example: Scalar parameter case
When © < R, the quadratic risk reduces to

R(0,8) = E@[(é(X) ~ 9)2] — f (0(x) — 6)* dPy(x).

E

A "good" estimator typically has small quadratic risk, but remember that R(6, GA) is a function
of 8 and may be small for some parameter values and large for others.



Bias—variance decomposition

Proposition (Bias—variance decomposition)

Let (X, P) be a statistical experiment with P = {Py : § € ©} and let # be an estimator. For
every 0 € ©, it X ~ Py,

The function

is called the bias of 0.

Scalar parameter case
If © c R, then



Example: Bernoulli model and empirical mean

Setting

Let (X,P) with P = {B(6)®": 0 € [0,1]}, where X = (X1,...,X,) and X; are i.i.d.
Bernoulli(8).

A natural estimator of 6 is the empirical mean

e By the (strong) law of large numbers, 8,(X) — 6 almost surely, hence 8, is consistent.

e By the central limit theorem, \/n(6,(X) — ) =X N(0,0(1 —)), so 0, is asymptotically
normal.

e Since Ey[0,(X)] = 6, the estimator is unbiased and

N

R(6,81) = ol (6,(X) — 0)2] = Vars(,(x)) = 22=2,

n




Risk and probability of large error

For any estimator 6 and any ¢ > 0, the quadratic risk controls the probability of a large error:

Py (16(X) 0] > <) < EQ[(QA(XZ) ~0)’] _ ﬂze)

This follows from Markov's (or Chebyshev's) inequality.

Thus, a small quadratic risk implies that é(X) is close to 8 with high probability.



Example: Gaussian mean, two estimators

Setting

Let X1,...,X, beiid. N (6,1) with 6 € R.
We compare two estimators:

® a constant estimator 0, = 0y for some fixed 6y € R.
R(0,0,) = Eg[ (6o — 0)*] = (6 — 60)>.

This risk is zero at 6 = 0, but positive elsewhere and does not decrease with n.

* the empirical mean 6,(X) = X, = 137 . X;, for which E4[6,(X)] = 6 (unbiased) and

" n

R(0,6,) = Vary(B,(X)) = =

n .

The risk is independent of 6 and decreases at rate 1/n.



Consistency and asymptotic normality

Exercise. For X ~ Bin(n,#) and § = X/n, show that R(6,0) < 1/(4n) for all 6 € [0, 1].

R(0,8] = %Jr Vo (6) T Gl = FLX]
O “mmO=6

_ o ee® - 9uel oo A,

T T Mo T A

I,

&) 177 1



Exact confidence intervals and regions

Let o > 0.
Definition (exact confidence interval / region)

* Case © c R. A (random) interval /(X) = [a(X), b(X)] is a confidence interval of level
(at least) 1 — « if

Voe©, Py(0el(X)) = 1—c.

e Case © c RY. A random subset R(X) < © is a confidence region of level (at least) 1 — a
if

V9e®, Py(feR(X)) = 1—c.

/A\The interval /(X) cannot depend on the unknown parameter #; it may only depend on
known quantities (such as «, the sample size n, and the data X).



Example: normal mean, exact confidence interval

® Gaussian model
We observe X = (Xi,...,X,) i.id. with X; ~ N (0,1), 0 € R. Let
O(X)=X,=n"13" X Then

1 (X —0) ~ N(0,1).




Example: normal mean, exact confidence interval

® Gaussian model
We observe X = (Xi,...,X,) i.id. with X; ~ N (0,1), 0 € R. Let
O(X)=X,=n"13" X Then

1 (X —0) ~ N(0,1).

Denote by ¢ the c.d.f. of N(0,1) and set g, = (1 — a/2), so that
PIA(0, 1] > g) = o




Example: normal mean, exact confidence interval

® Gaussian model
We observe X = (Xy,...,X,) i.i.d. with X; ~ NV (0,1), 6 € R. Let
0(X)=X,=n"1 P 1X Then

1 (X —0) ~ N(0,1).

Denote by ¢ the c.d.f. of A/(0,1) and set Gor = ®~1(1 - «/2), so that
PN (0,1)] > ga) = a. o

® Resulting confidence interval 4= i
We have Z_;‘)@Cx) C[/“—';m@ < @(f\) + qiyj\/_n_
A N
Py (|vn (00X) — 6)| > ga) = o

Equivalently,

is an exact level 1 — o confidence interval for 6.



Asymptotic confidence intervals

Sometimes the finite-sample distribution of an estimator is unknown, but its limiting
distribution as n — oo is known. This leads to asymptotic confidence intervals/regions.

Definition (asymptotic confidence interval /region)
e Case © — R. A random interval /(X(") is an asymptotic confidence interval of level (at

least) 1 — «v if

¥0e©, liminf Pp(de /(X)) = 1-a.

n— 00

e Case © c RY. A random set R(X(") = © is an asymptotic confidence region of level (at
least) 1 — « if

Ve ©, liminf Py(0e R(X™)) = 1-a.

n—2o0



General construction from an asymptotically normal

estimator

Proposition (asymptotic Cl from asymptotic normality)
Assume © R and let 8, = 0,(X) be an estimator such that

_9) £, 2
Vn (0, —0) — N (0,5%(0)),
where the function 0 — o2(0) is continuous.
Let g, > O satisfy L\’\_\/—/—/J
P(NV(0.1)| <) =10 (s0 40 = 0~ 1(1— 0/2)).

Define

N\ N\

_ %U(Qn(x)) A an'(Qn(X))
NG , 0,(X) + NG

Then /(X) is an asymptotic confidence interval of level exactly 1 — «.

1(X) = | 0a(X)




General construction from an asymptotically normal
estimator

proof: \/7((9 —(9 —>N ) — Conzig WC\&

™ (6 —6) = TC@ - \Emé(”\’> 2 W0
&y StE), LS

= LS dJ(G“l)

fim lﬁ(\w?’@) ‘?%Q

M >100 \/N\—/

/\
[=>Be] ot 3&“@}




Conditional distribution (discrete case)

Definition (discrete conditional law)

Let X and Y be discrete random variables on a probability space (2, F,P), with values
respectively in sets E and F. For x € E such that P(X = x) > 0, the conditional distribution of
Y given X = x, denoted L(Y | X = x), is defined for all y € F by

P(Y =y, X=x) ( Bq&ej/rufé)

P(Y =y | X =x) = BIX = x)

This defines, for each fixed x, a probability distribution on F.



%NQL s Gﬁ X Joint densities and marginals
Let /f\ p canl @FU]r éy >/
* (E,€) and (F,F) be measurable spaces;
® « a o-finite positive measure on (E, &), and S a o-finite positive measure on (F, F);
® X an E-valued random variable and Y an F-valued random variable.

Assume the pair (X, Y) has a joint density h(x,y) with respect to a ® 3, i.e.

dP(x,y) = h(x,y) da(x) dB(y). Ny Rodgon
The marginal law of X is the (probability) density Ne 2.~ CE _E &
0= | hbxy)ds). & g (A XB)
and the marginal law of Y is the (probability) density - (X( /A\ BC%/

gly) = f h(x,y) da(x).



Conditional density (continuous case)

Definition (conditional density for fixed x)

Assume f(x) > 0 for some x € E. The conditional law of Y given X = x, denoted
L(Y | X = x), is the probability measure on F with density (w.r.t. 5)

h(x,y) h(x,y)

T f(x)

gx(y) :
JF h(x,y)dB(y)

We may sometimes write g(y | x) instead of gy(y) when there is no risk of confusion.

Remark

For points where f(x) = 0 we can define g, arbitrarily (e.g. 0); these x typically form a set of
L(X)-measure zero, so they do not affect integrals.



Random conditional density and joint density factorization

Random conditional density
By extension, we define the conditional density of Y given X as the random density

h(X,y)

gx(y) =gy | X) =<4 f(X)~
0, f(X) =

Since f(X) > 0 almost surely, one usually just writes

gx(y) = hff)(;))/) -




Conditional expectation via conditional density

Definition (conditional expectation)

Let ¢ : F — R be measurable with E[o(Y)]| < c0. The conditional expectation of ¢(Y') given
X is

E[p(Y) | X] = f o) gy | X)dB(y).

F

This is a random variable measurable with respect to o(X).

Law of total expectation
For any measurable ¥ : E x F — R such that ¢(X, Y) is integrable,

E[w(X, V)] = E[E[4(X, ) | X]].
In particular, if (X, Y) = ¥1(X)2(Y) with integrable 11 (X) and ¥2(Y'), then

E[1(X)y2(Y)] = E[v1(X) E[¢2(Y) | X]].



Conditional expectation as best L? predictor

Projection property (orthogonality)
In the previous setting, let Y be square integrable: E[Y?] < co. Then

e M BLY = 00 = E[(Y - E[Y [ X])%).

Thus E[Y | X] is the best mean-square predictor of Y among all (square integrable)
functions of X.



Conditional expectation as best L? predictor

Projection property (orthogonality)
In the previous setting, let Y be square integrable: E[Y?] < co. Then

e M BLY = 00 = E[(Y - E[Y [ X])%).

Thus E[Y | X] is the best mean-square predictor of Y among all (square integrable)
functions of X.

Proof:
For any measurable ¢ : E — R with E[p(X)?] < o0,

E[(Y —o(X))?] = E[(Y —E[Y | X])?] + E[(E[Y | X] — (X))?].
The cross-term is zero because

E[(Y —E[Y | X])(ELY | X] — ¢(X))] = E[E[Y — E[Y | X] | X](E[Y | X] - (X))] = 0.



Square integrability of E|Y | X]

To justify the previous result we need E[E[Y | X]?| < 0.

By the conditional Jensen inequality,
E[E[Y | X]?] < E[E[Y?]| X]] = E[Y?] < .

Hence E[Y | X] is square integrable and the projection property makes sense in L2



Frequentist approach

In the frequentist approach, we assume that there exists a true but unknown parameter value
6o € © such that the data X follow the law Py,:

30 ® st. X ~ Py,

Gaussian model
Let

X=(X,...,. %), P={N(@6,1)%:0eR}.

The frequentist assumption is that for some 6 € R, the data are i.i.d. N'(6p,1). One can then

estimate 6y by the empirical mean X,; by the law of large numbers, X, L 0o.

e Estimation: construct an estimator (X) close to 6.

* Confidence sets: build random sets R(X) < © with 6y € R(X) with high probability
under Py, .

* Tests: answer "true/false" to a property of 6y via tests ¢(X) € {0, 1}.



Bayesian approach: intuition

In the Bayesian approach, all unknown quantities are modeled as random variables.

Prior and posterior

e Before observing data, our uncertainty about 6 is described by a prior distribution [y on
©.
® After observing X, we update this prior using Bayes’ formula to obtain the posterior
distribution T1( - | X).
The posterior combines:
® prior knowledge (or belief) about 6;
® the information contained in the data X.

Coin tossing: frequentist vs Bayesian view
Let 6 € [0, 1] be the probability of "heads".
* Frequentist: 6 is fixed; with many tosses, the empirical frequency X, converges to 6 (LLN,
CLT).

® Bayesian: before any toss, we put a prior on 6 (e.g. uniform on [0, 1]). Each new
observation updates the prior to a posterior that reflects both prior belief-and data.



