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Overview of the lecture

‚ First part: Organization of the course
‚ Motivation
‚ Course logistics
‚ Assessment

‚ Second part: Background from Probability and Statistics

‚ Measure theory and random variables

‚ Statistical models and estimators

‚ Model selection

‚ High-dimensional / nonparametric models



World War II



Search for plane wreck



Science

D. Berry, Adaptive Bayesian Clinical Trials: The Past, Present, and
Future of Clinical Research, 2025



Uncertainty in modeling
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Uncertainty and probabilistic modeling

‚ Representing uncertainty with probabilities + Updating uncertainty

‚ Two types of uncertainty: aleatoric and epistemic

‚ Aleatoric uncertainty due to randomness
‚ we are not able to obtain observations which could reduce this uncertainty

‚ Epistemic uncertainty due to lack of knowledge
‚ we are able to obtain observations which can reduce this uncertainty
‚ two observers may have different epistemic uncertainty



Impact on society

Better modelling and quantification of uncertainty

Ñ better science

Ñ better informed decision making
in companies, government, and NGOs



Bayesian probability theory

expert information, previous experiments,...

data
Œ Ö

mathematical model
+

uncertainty with probabilities
+

Bayesian probability theory

ppθ|yq “
ppy |θqppθq

ppyq

ppỹ |yq “

ż

ppỹ |θqppθ|yqdθ

Ó

updated uncertainty
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Bayesian probability theory

‚ Based on Bayesian probability theory
‚ uncertainty is presented with probabilities
‚ probabilities are updated based on new information

‚ Thomas Bayes (170?–1761)
‚ English nonconformist, Presbyterian minister, (amateur) mathematician
‚ considered the problem of inverse probability

‚ significant part of the Bayesian theory

‚ Bayes did not invent all, but was first to solve problem of inverse probability in special case
‚ Laplace generalized the initial methods and applied it to scientific problems (e.g.,

astronomy)
‚ Modern Bayesian theory with rigorous proofs developed in 20th century



Bayesian probability theory

A nice book about history: Sharon Bertsch McGrayne, The Theory That Would Not Die, 2012.



Term Bayesian used first time in mid 20th century

‚ Earlier there was just "probability theory"
‚ concept of the probability was not strictly defined, although it was close to modern Bayesian

interpretation
‚ in the end of 19th century there were increasing demand for more strict definition of

probability (mathematical and philosophical problem)
‚ In the beginning of 20th century frequentist view gained popularity

‚ accepts definition of probabilities only through frequencies
‚ does not accept inverse probability or use of prior
‚ gained popularity due to apparent objectivity and "cook book" like reference books

‚ R. A. Fisher used in 1950 first time term "Bayesian" to emphasize the difference to general term
"probability theory"
‚ term became quickly popular, because alternative descriptions were longer

‚ The probabilistic programming revolution started in early 1990’s



Bayesian Statistics course
‚ Probability distributions as model building blocks

‚ need to understand the math part (prereq.)
‚ continuous vs discrete (prereq.)
‚ observation model, likelihood, prior
‚ constructing bigger models

‚ Computation
‚ We need to be able to compute expectations

Eθ|y rgpθqs “

ż

ppθ|yqgpθqdθ

‚ when analytic solutions are not available, computational approximations with finite number
of function evaluations

‚ importance sampling, Monte Carlo, Markov chain Monte Carlo, variational Bayes

‚ Not in this course: Diagnostics



Bayesian Statistics course
‚ Bayesian inference : process of statistical learning via Bayes’ rule.

PpA|E q “
PpE |AqPpAq

PpE |AqPpAq ` PpE |AcqPpAcq
“

PpE |AqPpAq

PpE q

or

ppθ|yq “
ppθ, yq

ppyq
“

ppθqppy |θq

ppyq

‚ Bayesian methods are data analysis tools that are derived from the principles of Bayesian
inference.

‚ Bayesian methods provide:
‚ a rational method for updating beliefs in light of new information;
‚ parameter estimates with good statistical properties;
‚ predictions for missing data and forecasts of future data;
‚ a computational framework for model estimation, selection and validation.



Course Logistics
‚ Course administered through Quercus

‚ Syllabus, Lecture Notes, HW Problems, Quizzes, etc
‚ Also look at the course webpage

‚ Textbook: Bayesian Data Analysis by Gelman, Carlin, Stern, Dunson, Vehtari & Rubin.

‚ Communication
‚ For course content questions use Piazza or OH

‚ For personal issues use email (with [STAD91] in the subject) or office hours (TH 10am-1pm
@ IA 4064)

https://q.utoronto.ca/courses/429453
https://thibaultrandrianarisoa.netlify.app/courses/stad91/
https://sites.stat.columbia.edu/gelman/book/
https://sites.stat.columbia.edu/gelman/book/t


Assessment
Evaluation Weight Details
Weekly Quizzes (on Kahoot) 20% ‚ Best 8/10

‚ Cover previous week’s material
‚ At the end of the lecture

Homework Assignments 10% ‚ Two Homework Assignments (5% each)
‚ Date: After the midterm, TBD
‚ Pen & paper derivations + Coding

(Python/Numpy or R)

Term Test 25% ‚ Covers first 5 weeks
‚ Tentative Date: Feb 26 (wk 10)

Final 45% ‚ Cumulative
‚ Final exam period

No make-up Quizzes/Term Tests; if you miss midterm you must declare absence on ACORN & mark
will be replaced by final.



Review of Key Concepts
Probability & inference topics you are expected to remember (quick recap)



Absolute continuity
Definition (absolute continuity)
Let P and µ be two σ-finite measures on a measurable space pE , Eq. We say that P is
absolutely continuous with respect to µ, and write P ! µ, if

@A P E , µpAq “ 0 ùñ PpAq “ 0.

Radon–Nikodym theorem
If P ! µ, then there exists a positive measurable function p such that for every A P E ,

PpAq “

ż

A

ppxq dµpxq.

The function p is called the Radon-Nikodym derivative of P with respect to µ and is denoted

p “
dP
dµ

.
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Absolute continuity
Notation
One may write, suggestively,

PpAq “

ż

A

dPpxq “
ż

A

dPpxq
dµpxq

dµpxq “
ż

A

ppxq dµpxq.

Discrete distributions
‚ On E “ t0, 1u, the Bernoullipθq law has a density with respect to µ “ δ0 ` δ1:

ppxq “ p1´ θq1tx“0u ` θ1tx“1u.

‚ On E “ t0, 1, . . . , nu, the Binomialpn, θq law is absolutely continuous with respect to the
counting measure µ “

řn
k“0 δk , with density

ppkq “

ˆ

n

k

˙

θkp1´ θqn´k , k “ 0, 1, . . . , n.

‚ On E “ N˚, the geometric law with parameter p is absolutely continuous with respect to
the counting measure µ “

ř

kě1 δk , with density
ppkq “ p1´ pqk´1p, k ě 1.
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Absolute continuity

Continuous distributions

‚ The normal law N pµ, σ2q has density with espect to Lebesgue measure on R:

x ÞÝÑ
1

?
2πσ2

exp

"

´
px ´ µq2

2σ2

*

.

‚ The exponential law with rate λ ą 0 has density (with respect to Lebesgue on R)

x ÞÝÑ λe´λx1txě0u.



Classical inequalities

Markov’s inequality
Let X be a non-negative real random variable and a ą 0. Then

PpX ě aq ď
ErX s
a

.

In particular, for a real random variable X and p P N˚, since x ÞÑ xp is increasing on R`,

Pp|X | ě aq “ Pp|X |p ě apq ď a´p Er|X |ps.

Chebyshev’s inequality
Let X be a real random variable and a ą 0. Then

P
`

|X ´ ErX s| ě a
˘

ď
VarpX q

a2 , VarpX q “ E
“

pX ´ ErX sq2
‰

.



Classical inequalities

Hoeffding’s inequality
Let X1, . . . ,Xn be independent random variables, denote X n “

1
n

řn
k“1 Xk and suppose

ai ď Xi ď bi a.s.. Then for all ε ě 0,

P
`

X̄n ´ ErX̄ns ě ε
˘

ď exp

ˆ

´
2ε2n2

řn
i“1pbi ´ ai q2

˙

.



Classical inequalities

Example: Bernoulli sample mean
Let X1, . . . ,Xn be i.i.d. with Bernoullippq distribution and X̄n “

1
n

řn
i“1 Xi . For every ε ą 0,

Chebyshev’s inequality:

P
`

|X̄n ´ p| ą ε
˘

ď
VarpX̄nq

ε2
“

pp1´ pq

nε2
.

Since 0 ď Xi ď 1, we can improve this using Hoeffding’s inequality:

P
`

|X̄n ´ p| ą ε
˘

ď 2 exp
`

´ 2nε2
˘

.

Chebyshev gives a bound of order 1{n, whereas Hoeffding yields an exponentially small bound
in n.



Gamma and Beta distributions
Gamma distribution
For p, λ ą 0, a random variable Z has Gammapp, λq distribution if it has density

fZ pxq “
λp

Γppq
xp´1e´λx 1txě0u, Γppq “

ż 8

0
zp´1e´z dz .

‚ ErZ s “
p

λ
, VarpZ q “

p

λ2 .

‚ Special case: Γp1, λq “ Exppλq.

Beta distribution
For a, b ą 0, a random variable X has Betapa, bq distribution if it has density

fX pxq “
1

Bpa, bq
xa´1p1´ xqb´11t0ďxď1u, Bpa, bq “

ż 1

0
za´1p1´ zqb´1 dz “

ΓpaqΓpbq

Γpa` bq
.

‚ ErX s “
a

a` b
, VarpX q “

ab

pa` bq2pa` b ` 1q
.

‚ Special case: Betap1, 1q “ Ur0, 1s.



Gamma and Beta: main properties
Additivity of Gamma
If Y „ Γpp, λq and Z „ Γpq, λq are independent, then

Y ` Z „ Γpp ` q, λq.

In particular, if E1, . . . ,En are i.i.d. Exppλq, then
řn

i“1 Ei „ Γpn, λq.

Scaling of Gamma
If Y „ Γpp, λq and t ą 0, then tY „ Γ

`

p, λt
˘

.

Gamma–Beta connection
If X „ Γpa, λq and Y „ Γpb, λq are independent, then X

X`Y „ Betapa, bq.

As a special case, if E1,E2 are i.i.d. Exppλq, then

E1

E1 ` E2
„ Ur0, 1s.



Dirichlet distribution: definition and properties
Definition (Dirichlet distribution)
Let K ě 2 and α1, . . . , αK ą 0. A random vector X “ pX1, . . . ,XK q has Dirichletpα1, . . . , αK q

distribution if Xi ą 0,
řK

i“1 Xi “ 1, and its density on the simplex is

fX px1, . . . , xK q “
Γ
`
řK

i“1 αi

˘

śK
i“1 Γpαi q

K
ź

i“1

xαi´1
i , px1, . . . , xK q P SK “ tx P r0, 1sK :

ÿ

i

xi “ 1u

Key properties
‚ Beta as a special case: for K “ 2, Dirpα1, α2q is the Betapα1, α2q distribution.
‚ Marginals are Beta: if X „ Dirpα1, . . . , αK q, then

Xi „ Beta

˜

αi ,
K
ÿ

k“1

αk ´ αi

¸

, ErXi s “
αi

řK
k“1 αk

‚ Gamma representation: If Zi „ Γpαi , λq are independent and Z “
řK

k“1 Zk , then
ˆ

Z1

Z
, . . . ,

ZK

Z

˙

„ Dirpα1, . . . , αK q.



Modes of convergence of random variables

Convergence in probability
Let X1, . . . ,Xn, . . . and X be random variables taking values in Rd , defined on the same
probability space pΩ,F ,Pq. The sequence pXnq converges in probability to X , written Xn

P
ÝÑ X ,

if
@ε ą 0, P

`

‖Xn ´ X‖ ą ε
˘

ÝÝÝÑ
nÑ8

0.

Convergence in L2

In the same setting, we say that pXnq converges in L2 to X , written Xn
L2

ÝÑ X , if

E
”

‖Xn ´ X‖2
ı

ÝÝÝÑ
nÑ8

0.



Modes of convergence of random variables (II)

Almost sure convergence
With the same notation, the sequence pXnq converges almost surely to X , written Xn

a.s.
ÝÝÑ X if

P
´!

ω P Ω : Xnpωq ÝÝÝÑ
nÑ8

X pωq
)¯

“ 1.

Proposition
We have the implications

Xn
a.s.
ÝÝÑ X ùñ Xn

P
ÝÑ X ,

and

Xn
L2

ÝÑ X ùñ Xn
P
ÝÑ X .



Convergence in distribution

Convergence in distribution / in law
Let pXnqně1 and X be random variables with values in Rd . We say that Xn converges in
distribution (or in law) to X , written Xn

L
ÝÑ X , if for every bounded continuous function

f : Rd Ñ R,

E
“

f pXnq
‰

ÝÝÝÑ
nÑ8

E
“

f pX q
‰

.

Similarly, we say that pXnq converges in distribution to a probability measure P on Rd if

E
“

f pXnq
‰

ÝÝÝÑ
nÑ8

E
“

f pX q
‰

for X „ P and every bounded continuous function f .



Central Limit Theorem in Rd

Multivariate Central Limit Theorem
Let pXnq be a sequence of i.i.d. random variables with values in Rd , such that E

”

‖X1‖2
ı

ă 8.

Let
µ “ ErX1s, Σ “ E

“

pX1 ´ ErX1sqpX1 ´ ErX1sq
T
‰

.

Then
?
n
`

X n ´ µ
˘ L
ÝÑ N p0,Σq.



Continuous mapping theorem, Slutsky’s lemma
Continuous mapping theorem
Let Xn,X be random variables taking values in Rd and g : Rd Ñ Rk a continuous function.

‚ If Xn
L
ÝÑ X , then gpXnq

L
ÝÑ gpX q.

‚ If Xn
P
ÝÑ X , then gpXnq

P
ÝÑ gpX q.

‚ If Xn
a.s.
ÝÝÑ X , then gpXnq

a.s.
ÝÝÑ gpX q.

Slutsky’s lemma
Let pXnq and pYnq be sequences of real-valued random variables, X a real-valued random
variable, and a P R.

Xn
L
ÝÑ X and Yn

P
ÝÑ a ùñ pXn,Ynq

L
ÝÑ pX , aq.

Remark
For a constant a, we have

Zn
L
ÝÑ a ðñ Zn

P
ÝÑ a.



Statistical experiment and model

A statistical experiment consists of
‚ a random variable X defined on a probability space pΩ,F ,Pq with values in a measurable

space pE , Eq;
‚ a family of probability measures on pE , Eq, called a statistical model,

P “ tPθ : θ P Θu,

where Θ is the parameter space.

In the frequentist approach one assumes that the law of X belongs to the model:

Dθ0 P Θ, X „ Pθ0 .

Statistical inference aims at learning about θ0 from an observation of X .



Sample model
In practice X is often an n-tuple of random variables

X “ pX1, . . . ,Xnq

Then the sample space and the model depend on n.

Example: n-sample model
When X “ pX1, . . . ,Xnq, one often works with the n-sample model

Pn “
 

Pbn
θ : θ P Θ

(

,

where

Pbn
θ “ Pθ b ¨ ¨ ¨ b Pθ

looooooomooooooon

n times

.

This corresponds to assuming that X1, . . . ,Xn are i.i.d. with common distribution Pθ.



Identifiability and dominated models

Identifiable model
A statistical model P “ tPθ : θ P Θu is identifiable if for all θ, θ1 P Θ,

Pθ “ Pθ1 ùñ θ “ θ1.

Equivalently, the mapping θ ÞÑ Pθ is injective. This guarantees that each distribution in the
model corresponds to a unique parameter value.

Dominated model
The model P “ tPθ : θ P Θu is dominated if there exists a σ-finite measure µ on E such that,
for all θ P Θ, Pθ ! µ. Then every Pθ admits a density pθ with respect to µ:

dPθpxq “ pθpxq dµpxq.

In what follows we often work with dominated, parametric models with Θ Ă Rd .



Example 1: Bernoulli model

Consider E “ t0, 1u and parameter space Θ “ p0, 1q. For θ P Θ let

PθpX “ 1q “ θ, PθpX “ 0q “ 1´ θ.

The model is

P “ tPθ : θ P p0, 1qu.

‚ This is a dominated model with respect to the counting measure on t0, 1u; the density is

pθpxq “ p1´ θq1t0upxq ` θ 1t1upxq.

‚ The model is identifiable: Pθ “ Pθ1 implies θ “ PθpX “ 1q “ Pθ1pX “ 1q “ θ1.



Example 2: Gaussian model with unknown mean

Let E “ R, Θ “ R and fix σ2 ą 0. For θ P Θ define Pθ as the normal law

Pθ “ N pθ, σ2q.

The model is

P “ tN pθ, σ2q : θ P Ru.

‚ This model is dominated by Lebesgue measure λ on R with density

pθpxq “
1

?
2πσ2

exp

ˆ

´
px ´ θq2

2σ2

˙

.

‚ It is identifiable: equality of the densities (or distributions) for all x forces the means to be
equal.



Estimators in a statistical experiment

Estimator
Consider the statistical experiment pX ,Pq. An estimator of the parameter θ is a measurable
function

θ̂ “ θ̂pX q

with values in the parameter space Θ (more precisely, θ̂ is measurable from pE , Eq to
pΘ,BpΘqq, where BpΘq is the Borel σ-algebra).

Sequence of experiments
In practice we often have a sequence of experiments pX pnq,Pnq, n “ 1, 2, . . .

This leads to a sequence of estimators pθ̂nq.



Likelihood and maximum likelihood estimator

Assume a dominated model with respect to a measure µ: for each θ P Θ,

dPθpxq “ pθpxq dµpxq.

Let X “ pX1, . . . ,Xnq „ Pbn
θ . The joint density of X is

pbn
θ px1, . . . , xnq “

n
ź

i“1

pθpxi q.

Viewed as a function of θ for the observed data X , this is the likelihood function

LθpX q “
n
ź

i“1

pθpXi q.

Often we work instead with the log-likelihood

`θpX q “ log LθpX q “
n
ÿ

i“1

log pθpXi q.



Maximum likelihood estimator (MLE)

Definition (MLE)
In a dominated model, a maximum likelihood estimator (MLE) is, when it exists, a value
θ̂pX q P Θ such that

θ̂pX q P arg max
θPΘ

LθpX q, or equivalently θ̂pX q P arg max
θPΘ

`θpX q.

Example / exercise (Bernoulli model). In the Bernoulli model P “ tBpθqbn : θ P r0, 1su,
show that the MLE of θ is unique and given by the empirical mean

θ̂pX q “ X n.



Maximum likelihood estimator (MLE)



Consistency and asymptotic normality

Consistency
Consider a sequence of experiments pX pnq,Pnq with

Pn “ tP
bn
θ : θ P Θu.

A sequence of estimators pθ̂nq is consistent if, for every θ P Θ, when X pnq „ Pbn
θ ,

θ̂n
`

X pnq
˘ P
ÝÝÝÑ
nÑ8

θ.

Asymptotic normality
In the same setting, pθ̂nq is asymptotically normal if for each θ P Θ there exists a symmetric
positive semi-definite matrix Σθ such that, when X pnq „ Pbn

θ ,

?
n
`

θ̂npX
pnqq ´ θ

˘ L
ÝÝÝÑ
nÑ8

N p0,Σθq.



Consistency and asymptotic normality

Exercise. Show that if pθ̂nq is asymptotically normal, then it is consistent.



Quadratic risk of an estimator

Definition (Quadratic risk)
Let pX ,Pq be a statistical experiment with P “ tPθ : θ P Θu and let θ̂ be an estimator.
The quadratic risk of θ̂ at θ is

Rpθ, θ̂q “ Eθ
„∥∥∥θ̂pX q ´ θ∥∥∥2



“

ż

E

∥∥∥θ̂pxq ´ θ∥∥∥2
dPθpxq.

Example: Scalar parameter case
When Θ Ă R, the quadratic risk reduces to

Rpθ, θ̂q “ Eθ
”

`

θ̂pX q ´ θ
˘2
ı

“

ż

E

`

θ̂pxq ´ θ
˘2 dPθpxq.

A "good" estimator typically has small quadratic risk, but remember that Rpθ, θ̂q is a function
of θ and may be small for some parameter values and large for others.



Bias–variance decomposition
Proposition (Bias–variance decomposition)
Let pX ,Pq be a statistical experiment with P “ tPθ : θ P Θu and let θ̂ be an estimator. For
every θ P Θ, if X „ Pθ,

Rpθ, θ̂q “ Eθ
„∥∥∥θ̂pX q ´ Eθrθ̂pX qs

∥∥∥2


`

∥∥∥Eθrθ̂pX qs ´ θ∥∥∥2
.

The function

θ ÞÝÑ Eθrθ̂pX qs ´ θ

is called the bias of θ̂.

Scalar parameter case
If Θ Ă R, then

Rpθ, θ̂q “ Varθ
`

θ̂pX q
˘

`
`

Eθrθ̂pX qs ´ θ
˘2
.



Example: Bernoulli model and empirical mean
Setting
Let pX ,Pq with P “ tBpθqbn : θ P r0, 1su, where X “ pX1, . . . ,Xnq and Xi are i.i.d.
Bernoulli(θ).

A natural estimator of θ is the empirical mean

θ̂npX q “ X n “
1
n

n
ÿ

i“1

Xi .

‚ By the (strong) law of large numbers, θ̂npX q Ñ θ almost surely, hence θ̂n is consistent.
‚ By the central limit theorem,

?
npθ̂npX q ´ θq

L
ÝÑ N p0, θp1´ θqq, so θ̂n is asymptotically

normal.
‚ Since Eθrθ̂npX qs “ θ, the estimator is unbiased and

Rpθ, θ̂nq “ Eθ
”

`

θ̂npX q ´ θ
˘2
ı

“ Varθpθ̂npX qq “
θp1´ θq

n
.



Risk and probability of large error

For any estimator θ̂ and any ε ą 0, the quadratic risk controls the probability of a large error:

Pθ
´

ˇ

ˇθ̂pX q ´ θ
ˇ

ˇ ě ε
¯

ď

Eθ
”

`

θ̂pX q ´ θ
˘2
ı

ε2
“

Rpθ, θ̂q

ε2
.

This follows from Markov’s (or Chebyshev’s) inequality.

Thus, a small quadratic risk implies that θ̂pX q is close to θ with high probability.



Example: Gaussian mean, two estimators

Setting
Let X1, . . . ,Xn be i.i.d. N pθ, 1q with θ P R.
We compare two estimators:
‚ a constant estimator θ̃n “ θ0 for some fixed θ0 P R.

Rpθ, θ̃nq “ Eθ
“

pθ0 ´ θq
2‰ “ pθ ´ θ0q

2.

This risk is zero at θ “ θ0, but positive elsewhere and does not decrease with n.

‚ the empirical mean θ̂npX q “ X n “
1
n

řn
i“1 Xi , for which Eθrθ̂npX qs “ θ (unbiased) and

Rpθ, θ̂nq “ Varθpθ̂npX qq “
1
n
.

The risk is independent of θ and decreases at rate 1{n.



Consistency and asymptotic normality

Exercise. For X „ Binpn, θq and θ̂ “ X {n, show that Rpθ, θ̂q ď 1{p4nq for all θ P r0, 1s.



Exact confidence intervals and regions

Let α ą 0.

Definition (exact confidence interval / region)
‚ Case Θ Ă R. A (random) interval I pX q “ rapX q, bpX qs is a confidence interval of level

(at least) 1´ α if

@θ P Θ, Pθ
`

θ P I pX q
˘

ě 1´ α.

‚ Case Θ Ă Rd . A random subset RpX q Ă Θ is a confidence region of level (at least) 1´α
if

@θ P Θ, Pθ
`

θ P RpX q
˘

ě 1´ α.

BThe interval I pX q cannot depend on the unknown parameter θ; it may only depend on
known quantities (such as α, the sample size n, and the data X ).



Example: normal mean, exact confidence interval
‚ Gaussian model

We observe X “ pX1, . . . ,Xnq i.i.d. with Xi „ N pθ, 1q, θ P R. Let
θ̂pX q “ X n “ n´1 řn

i“1 Xi . Then
?
n pX n ´ θq „ N p0, 1q.

Denote by Φ the c.d.f. of N p0, 1q and set qα “ Φ´1p1´ α{2q, so that
Pp|N p0, 1q| ą qαq “ α.

‚ Resulting confidence interval
We have

Pθ
´
ˇ

ˇ

ˇ

?
n
`

θ̂pX q ´ θ
˘

ˇ

ˇ

ˇ
ą qα

¯

“ α.

Equivalently,

I pX q “

„

θ̂pX q ˘
qα
?
n



is an exact level 1´ α confidence interval for θ.
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ˇ

ˇ
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ˇ

ˇ
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Asymptotic confidence intervals

Sometimes the finite-sample distribution of an estimator is unknown, but its limiting
distribution as nÑ8 is known. This leads to asymptotic confidence intervals/regions.

Definition (asymptotic confidence interval/region)
‚ Case Θ Ă R. A random interval I pX pnqq is an asymptotic confidence interval of level (at

least) 1´ α if

@θ P Θ, lim inf
nÑ8

Pθ
`

θ P I pX pnqq
˘

ě 1´ α.

‚ Case Θ Ă Rd . A random set RpX pnqq Ă Θ is an asymptotic confidence region of level (at
least) 1´ α if

@θ P Θ, lim inf
nÑ8

Pθ
`

θ P RpX pnqq
˘

ě 1´ α.



General construction from an asymptotically normal
estimator

Proposition (asymptotic CI from asymptotic normality)
Assume Θ Ă R and let θ̂n “ θ̂npX q be an estimator such that

?
n
`

θ̂n ´ θ
˘ L
ÝÝÝÑ
nÑ8

N
`

0, σ2pθq
˘

,

where the function θ ÞÑ σ2pθq is continuous.
Let qα ą 0 satisfy

P
`

|N p0, 1q| ď qα
˘

“ 1´ α (so qα “ Φ´1p1´ α{2q).

Define

I pX q “

«

θ̂npX q ´
qα σpθ̂npX qq

?
n

, θ̂npX q `
qα σpθ̂npX qq

?
n

ff

.

Then I pX q is an asymptotic confidence interval of level exactly 1´ α.



General construction from an asymptotically normal
estimator

proof:



Conditional distribution (discrete case)

Definition (discrete conditional law)
Let X and Y be discrete random variables on a probability space pΩ,F ,Pq, with values
respectively in sets E and F . For x P E such that PpX “ xq ą 0, the conditional distribution of
Y given X “ x , denoted LpY | X “ xq, is defined for all y P F by

PpY “ y | X “ xq “
PpY “ y ,X “ xq

PpX “ xq
.

This defines, for each fixed x , a probability distribution on F .



Joint densities and marginals
Let
‚ pE , Eq and pF ,Fq be measurable spaces;
‚ α a σ-finite positive measure on pE , Eq, and β a σ-finite positive measure on pF ,Fq;
‚ X an E -valued random variable and Y an F -valued random variable.

Assume the pair pX ,Y q has a joint density hpx , yq with respect to αb β, i.e.

dPpx , yq “ hpx , yq dαpxq dβpyq.

The marginal law of X is the (probability) density

f pxq “

ż

F

hpx , yq dβpyq,

and the marginal law of Y is the (probability) density

gpyq “

ż

E

hpx , yqdαpxq.



Conditional density (continuous case)

Definition (conditional density for fixed x)
Assume f pxq ą 0 for some x P E . The conditional law of Y given X “ x , denoted
LpY | X “ xq, is the probability measure on F with density (w.r.t. β)

gxpyq “
hpx , yq

f pxq
“

hpx , yq
ż

F

hpx , yq dβpyq
.

We may sometimes write gpy | xq instead of gxpyq when there is no risk of confusion.

Remark
For points where f pxq “ 0 we can define gx arbitrarily (e.g. 0); these x typically form a set of
LpX q-measure zero, so they do not affect integrals.



Random conditional density and joint density factorization

Random conditional density
By extension, we define the conditional density of Y given X as the random density

gX pyq “ gpy | X q “

$

&

%

hpX , yq

f pX q
, f pX q ą 0,

0, f pX q “ 0.

Since f pX q ą 0 almost surely, one usually just writes

gX pyq “
hpX , yq

f pX q
.



Conditional expectation via conditional density

Definition (conditional expectation)
Let ϕ : F Ñ R be measurable with ErϕpY qs ă 8. The conditional expectation of ϕpY q given
X is

ErϕpY q | X s “
ż

F

ϕpyq gpy | X q dβpyq.

This is a random variable measurable with respect to σpX q.

Law of total expectation
For any measurable ψ : E ˆ F Ñ R such that ψpX ,Y q is integrable,

ErψpX ,Y qs “ E
“

ErψpX ,Y q | X s
‰

.

In particular, if ψpX ,Y q “ ψ1pX qψ2pY q with integrable ψ1pX q and ψ2pY q, then

Erψ1pX qψ2pY qs “ Erψ1pX qErψ2pY q | X ss .



Conditional expectation as best L2 predictor

Projection property (orthogonality)
In the previous setting, let Y be square integrable: ErY 2s ă 8. Then

inf
ϕ:EÑR, ErϕpXq2să8

E
“

pY ´ ϕpX qq2
‰

“ E
“

pY ´ ErY | X sq2
‰

.

Thus ErY | X s is the best mean-square predictor of Y among all (square integrable)
functions of X .

Proof:
For any measurable ϕ : E Ñ R with ErϕpX q2s ă 8,

E
“

pY ´ ϕpX qq2
‰

“ E
“

pY ´ ErY | X sq2
‰

` E
“

pErY | X s ´ ϕpX qq2
‰

.

The cross-term is zero because

ErpY ´ ErY | X sqpErY | X s ´ ϕpX qqs “ E
“

E
“

Y ´ ErY | X s | X
‰

pErY | X s ´ ϕpX qq
‰

“ 0.
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Square integrability of ErY | X s

To justify the previous result we need E
“

ErY | X s2
‰

ă 8.

By the conditional Jensen inequality,

E
“

ErY | X s2
‰

ď E
“

ErY 2 | X s
‰

“ ErY 2s ă 8.

Hence ErY | X s is square integrable and the projection property makes sense in L2.



Frequentist approach
In the frequentist approach, we assume that there exists a true but unknown parameter value
θ0 P Θ such that the data X follow the law Pθ0 :

D θ0 P Θ s.t. X „ Pθ0 .

Gaussian model
Let

X “ pX1, . . . ,Xnq, P “
 

N pθ, 1qbn : θ P R
(

.

The frequentist assumption is that for some θ0 P R, the data are i.i.d. N pθ0, 1q. One can then
estimate θ0 by the empirical mean X̄n; by the law of large numbers, X̄n

P
ÝÑ θ0.

‚ Estimation: construct an estimator θ̂pX q close to θ0.
‚ Confidence sets: build random sets RpX q Ă Θ with θ0 P RpX q with high probability

under Pθ0 .
‚ Tests: answer "true/false" to a property of θ0 via tests ϕpX q P t0, 1u.



Bayesian approach: intuition
In the Bayesian approach, all unknown quantities are modeled as random variables.

Prior and posterior
‚ Before observing data, our uncertainty about θ is described by a prior distribution Π0 on

Θ.
‚ After observing X , we update this prior using Bayes’ formula to obtain the posterior
distribution Πp ¨ | X q.

The posterior combines:
‚ prior knowledge (or belief) about θ;
‚ the information contained in the data X .

Coin tossing: frequentist vs Bayesian view
Let θ P r0, 1s be the probability of "heads".
‚ Frequentist: θ is fixed; with many tosses, the empirical frequency X̄n converges to θ (LLN,

CLT).
‚ Bayesian: before any toss, we put a prior on θ (e.g. uniform on r0, 1s). Each new

observation updates the prior to a posterior that reflects both prior belief and data.


