
Tutorial: Probabilistic Graphical Models
Independence, Naive Bayes, and Variable Elimination

1 Exercise 1: Conditional Independence (Pruning / Edge Deletion)

Consider the following Directed Acyclic Graph (DAG):

a f

e b

c

1. Joint Distribution Factorization

ppa, b, c, e, fq “ ppaqppfqppe|a, fqppb|fqppc|eq

2. Verification of Independence

We apply the Pruning / Edge Deletion algorithm. To test X K Z | Y:

1. Delete Barren Nodes: Recursively delete leaf nodes not in XYY Y Z.

2. Delete Outgoing Edges: Remove all edges originating from nodes in the conditioning set
Y.

3. Check Connectivity: If X and Z are disconnected in the undirected skeleton of the resulting
graph, they are independent.

Case (a): Is a K b | c?
Step 1: Delete Nodes

Target set is ta, b, cu.

• Leaves in G: c and b. Both are in the target set.

• Result: No nodes are deleted.

Step 2: Delete Outgoing Edges from Conditioning Set tcu
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• Node c has no outgoing edges.

• Result: No edges are deleted.

Step 3: Check Connectivity In the remaining graph (which is identical to the original), is
there a path between a and b?

a f

e b

c

Conclusion: There is a path a´ e´ f ´ b in the undirected skeleton.

a M b | c

Case (b): Is a K b | f?
Step 1: Delete Barren Nodes

Target set is ta, b, fu.

• Node c is a leaf and c R ta, b, fu. Delete c.

• After deleting c, node e becomes a leaf.

• Node e is a leaf and e R ta, b, fu. Delete e.

• Node a is now a leaf, but a P Target. Keep.

• Node b is a leaf, but b P Target. Keep.

Step 2: Delete Outgoing Edges from Conditioning Set tfu

• Edges starting at f : The edge f Ñ b exists.

• Delete f Ñ b. (Note: f Ñ e was already removed when we deleted node e).

a f

be

c

Nodes c, e deleted

Edge f Ñ b deleted
(Outgoing from observed)

Step 3: Check Connectivity In the final graph, node a is isolated and node b is isolated.
There is no path connecting them.

a K b | f
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2 Exercise 2: Naive Bayes Model

1. Problem Setting

Consider the inference problem of text classification into spam (C “ 1) or not spam (C “ 0).

Bag of Words Representation: Suppose we have a dictionary of D words D “ tW1, . . . ,WDu

as an indexable set. A text x is a set of words in the dictionary, i.e., x “ tW P Du, which can
equivalently be represented as a set of indices x1 “ ti : Wi P xu.

Note: This is a fancy way of saying "appearance of word matters, repetition and order doesn’t
matter".

Example: Let D “ thello, world, test, is, this, au with D “ 6.

• "hello world" ” thello, worldu ” t1, 2u

• "this is a test" ” ttest, is, this, au ” t3, 4, 5, 6u

• "hello hello hello world" ” t1, 2u “ "hello world" “ "world hello"

Let X “ pX1, . . . , XDq where Xi P t0, 1u is a binary random vector denoting the appearance
of the i-th word in the text (e.g., Xphello worldq “ p1, 1, 0, 0, 0, 0q). Our goal is to compute the
posterior ppC|Xq.

2. A General Model

Using Bayes’ theorem, we can write the posterior as:

ppC|Xq “
ppC,Xq

ppXq

Since the denominator ppXq does not depend on the specific outcome of C, we have ppC|Xq9ppC,Xq.
We can factorize ppC,Xq into its components using the chain rule:

ppC,Xq “ ppCqppX|Cq

“ ppCqppX1|CqppX2|X1, Cq . . . ppXd|X1, . . . , Xd´1, Cq

“ ppCqppX1|Cq
d
ź

i“2

ppXi|X1, . . . , Xi´1, Cq

Graphical Model (General): Since each term is conditioned on all variables that appeared
to its left, the Directed Graphical Model (DGM) is fully connected:

C X1 X2 . . . Xd

Observations on Complexity:
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• This graph has d` 1 nodes (X1 to Xd, and C).

• The graph is fully connected; every node is a neighbor of every other node.

• For node Xi, the number of input edges is i (neighbors C,X1, . . . , Xi´1).

• The size of the conditional probability table (CPT) for each node requires 2#input edges pa-
rameters.

• Total # of parameters:

1`
d
ÿ

i“1

2i “ 1` p2d`1 ´ 2q “ 2d`1 ´ 1

This equals the number of parameters needed to specify the joint tensor over d ` 1 binary
random variables. The complexity scales exponentially.

3. Reducing Complexity with Naive Bayes

Learning 2d`1 ´ 1 parameters is very expensive (computationally and learning-theoretically).
Goal: Reduce parameters by simplifying the graphical model.

Method: Remove all edges between pXi, Xjq; only keep edges originating from C.

C

Xi

i “ 1 . . . d

Naive Bayes (Plate Notation)

C

X1 X2 Xd

Naive Bayes (Explicit)

Implied Factorization:

ppX,Cq “ ppCq
d
ź

i“1

ppXi|Cq

This implies ppXi|X1, . . . , Xi´1, Cq “ ppXi|Cq. In other words, Xi is independent from Xj for all
j ‰ i given C.

Conclusion:

• We can manipulate the joint distribution through manipulating the DGM!

• Number of parameters: 1`2d. The complexity now scales linearly instead of exponentially.
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3 Exercise 3: Gaussian Log-Likelihood

Gaussian log-likelihood

Suppose we observe some i.i.d. data x1:n “ tx1, . . . ,xnu from the m-variate Gaussian distribution
Nmpµ,Σq. The density is:

fpx;µ,Σq “
1

p2πqm{2
pdet Σq´1{2 expt´1

2px´ µq
JΣ´1px´ µqu.

It is convenient to equivalently express this density in terms of K “ Σ´1:

fpx;µ,Kq “
1

p2πqm{2
pdetKq1{2 expt´1

2px´ µq
JKpx´ µqu,

after taking logarithms it becomes

log fpx;µ,Kq “ ´
m

2
logp2πq `

1

2
log detK ´

1

2
px´ µqJKpx´ µq.

Up to the obvious constants that do not depend on µ and K, the log-likelihood is

`npµ,Kq “
n
ÿ

i“1

log fpxi;µ,Kq “ pconstq `
n

2
log detpKq ´

1

2

n
ÿ

i“1

pxi ´ µq
JKpxi ´ µq.

MLE for the Mean µ

Irrespective of the value of K, the optimal µ̂ satisfies

µ̂ “ x̄n “
1

n

n
ÿ

i“1

xi

This is because the gradient of ∇µ`n is

∇µ`npµ,Kq “ ´
1

2

n
ÿ

i“1

p2Kµ´ 2Kxiq “ ´nKµ`K
n
ÿ

i“1

xi “ nKpx̄n ´ µq.

Since K is invertible, this can be zero if and only if µ “ x̄n.

Profile Likelihood for K

We can thus consider the profile likelihood

`npx̄n,Kq “ pconstq `
n

2
log detpKq ´

1

2

n
ÿ

i“1

pxi ´ x̄nq
JKpxi ´ x̄nq.

Note that
n
ÿ

i“1

pxi ´ x̄nq
JKpxi ´ x̄nq “

n
ÿ

i“1

trppxi ´ x̄nq
JKpxi ´ x̄nqq

“

n
ÿ

i“1

trpKpxi ´ x̄nqpxi ´ x̄nq
Jq

“ n tr

˜

K

#

1

n

n
ÿ

i“1

pxi ´ x̄nqpxi ´ x̄nq
J

+¸

“ n trpKSnq,
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where Sn is the sample covariance matrix. Note that x̄n and Sn form the sufficient statistics for the
Gaussian model. With this new notation:

`npx̄n,Kq “ pconstq `
n

2
plog detpKq ´ trpKSnqq.

Some useful facts:

• log detpKq is a strictly concave function of K.

• trpKSnq is linear in K.

• The gradients are ∇K log detpKq “ K´1 “ Σ and ∇KtrpKSnq “ Sn.

• The MLE is Σ̂ “ Sn (this is where the gradient vanishes).
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4 Exercise 4: Variable Elimination

1. Simple Variable Elimination Example

Consider the following Directed Acyclic Graph (DAG) where we observe the variable X6 “ x̄6. We
wish to compute the posterior ppx1|x̄6q.

x1

x2

x3

x4

x5

x6

Factorization: The corresponding DAG model implies the factorization:

ppx1, . . . , x6q “ ppx1qppx2|x1qppx3|x1qppx4|x2qppx5|x3qppx6|x4, x5q

Query: We want to compute ppx1|x̄6q. We start by computing the marginal joint ppx1, x̄6q by
eliminating the hidden variables xR “ tx2, x3, x4, x5u.

ppx1, x̄6q “
ÿ

x2

ÿ

x3

ÿ

x4

ÿ

x5

ppx1, . . . , x5, x̄6q

Using the Variable Elimination algorithm with the ordering 5, 4, 3, 2:

ppx1, x̄6q “ ppx1q
ÿ

x2

ppx2|x1q
ÿ

x3

ppx3|x1q
ÿ

x4

ppx4|x2q
ÿ

x5

ppx5|x3qppx̄6|x4, x5q

looooooooooooomooooooooooooon

τ1px3,x4,x̄6q

“ ppx1q
ÿ

x2

ppx2|x1q
ÿ

x3

ppx3|x1q
ÿ

x4

ppx4|x2qτ1px3, x4, x̄6q

loooooooooooooomoooooooooooooon

τ2px2,x3,x̄6q

“ ppx1q
ÿ

x2

ppx2|x1q
ÿ

x3

ppx3|x1qτ2px2, x3, x̄6q

loooooooooooooomoooooooooooooon

τ3px1,x2,x̄6q

“ ppx1q
ÿ

x2

ppx2|x1qτ3px1, x2, x̄6q

loooooooooooooomoooooooooooooon

τ4px1,x̄6q

Finally, we normalize:

ppx1|x̄6q “
ppx1, x̄6q

ř

x1
ppx1, x̄6q
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2. Complexity and Elimination Ordering

The computational complexity of Variable Elimination is Opm ¨ kNmax`1q, where k is the number of
states per variable and Nmax is the maximum number of variables in a sum generated during the
process. The ordering of variables crucially determines Nmax and m is the number of factors.

Consider a model with the following factorization with m “ 8:

ppC,D, . . . q9φpCqφpC,DqφpJ, L, SqφpS, IqφpIqφpG,D, IqφpL,GqφpH,G, Jq

Example 1: A "Bad" Ordering
Let’s eliminate variables according to the ordering ă tG, I, S, L,H,C,Du.

ppJq “
ÿ

D

ÿ

C

φpCqφpC,Dq
ÿ

H

ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

I

φpS, IqφpIq
ÿ

G

φpG,D, IqφpL,GqφpH,G, Jq

loooooooooooooooooooomoooooooooooooooooooon

τpD,L,H,J,Iq, NG“6
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

τpD,L,H,J,Sq, NI“6
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

τpD,Jq, N“5,4, then 3

(Simplification of the trace shown for brevity)

• The sum with the largest number of variables participating has Nmax “ 6.

• Complexity: Op8ˆ k6q.

Example 2: A "Better" Ordering
Let’s try the Elimination Ordering ă tD,C,H,L, S, I,Gu.

ppJq “
ÿ

G

ÿ

I

φpIq
ÿ

S

φpS, Iq
ÿ

L

φpL,GqφpJ, L, Sq
ÿ

H

φpH,G, Jq
ÿ

C

φpCq
ÿ

D

φpG,D, IqφpC,Dq

Looking at the largest factor generated in this sequence, it is τpG, I, J, L, Sq, kmax “ 5

• Complexity: Op8ˆ k5q.

• This demonstrates that choosing a good elimination ordering (finding the optimal one is NP-
hard) significantly impacts inference speed.
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5 Exercise 5: Sum-Product on Trees (Numerical Example)

Consider the following tree structure.

x1

x2 x3

x4 x5

To have concrete numbers, suppose all variables are binary xi P t0, 1u and take unary potentials
ψipxiq “ 1. Let the pairwise potentials be defined by the following matrices (where rows/columns
correspond to values 0 and 1):

ψ12 “

„

1 2
2 1



, ψ13 “

„

2 1
1 2



, ψ34 “

„

1 1
2 2



, ψ35 “

„

1 2
1 2



.

In this notation, the pi, jq–entry of the matrix correspond to ψlkpi, jq.

1. Joint Distribution

The joint distribution is given by:

ppx1, x2, x3, x4, x5q “
1

Z

5
ź

i“1

ψipxiqψ12px1, x2qψ13px1, x3qψ34px3, x4qψ35px3, x5q.

Conditioning: Let’s fix the values of three variables: x̄2 “ 1, x̄4 “ 1, x̄5 “ 0. We get:

ppx1, 1, x3, 1, 0q “
1

Z
ψ12px1, 1qψ13px1, x3qψ34px3, 1qψ35px3, 0q.

Direct Calculation: We compute the unnormalized probability values for the remaining free
variables px1, x3q:

pp0, 1, 0, 1, 0q “
1

Z
¨ 2 ¨ 2 ¨ 1 ¨ 1 “

4

Z

pp0, 1, 1, 1, 0q “
1

Z
¨ 2 ¨ 1 ¨ 2 ¨ 1 “

4

Z

pp1, 1, 0, 1, 0q “
1

Z
¨ 1 ¨ 1 ¨ 1 ¨ 1 “

1

Z

pp1, 1, 1, 1, 0q “
1

Z
¨ 1 ¨ 2 ¨ 2 ¨ 1 “

4

Z

Summing these terms (excluding Z): 4 ` 4 ` 1 ` 4 “ 13. From this, we get the conditional
distribution ppx1, x3|x̄2 “ 1, x̄4 “ 1, x̄5 “ 0q:

ppx1, x3| . . . q “
1

13

„

4 4
1 4



(rows x1, cols x3)
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2. Message Passing (Marginal Distributions)

Suppose we are interested in the marginal distributions of x1 and x3. We compute the message
passing formulas.

Messages from observed leaves:

m2Ñ1px1q “ ψ2p1qψ12px1, 1q “

„

2
1



pCol 1 of ψ12q

m4Ñ3px3q “ ψ4p1qψ34px3, 1q “

„

1
2



pCol 1 of ψ34q

m5Ñ3px3q “ ψ5p0qψ35px3, 0q “

„

1
1



pCol 0 of ψ35q

Computing m3Ñ1px1q: Since x3 is not observed, we sum over it:

m3Ñ1px1q “
ÿ

x3

ψ3px3qψ13px1, x3qm4Ñ3px3qm5Ñ3px3q

Calculating the product of incoming messages to node 3:
„

1
2



d

„

1
1



“

„

1
2



. Multiplying by transition

ψ13

m3Ñ1 “

„

2 1
1 2

 „

1
2



“

„

4
5



. (matrix multiplication here)

Belief for x1:
bpx1q “ ppx1|x̄2, x̄4, x̄5q9ψ1px1qm2Ñ1px1qm3Ñ1px1q

bpx1q9

„

2
1



d

„

4
5



“

„

8
5



.

Normalizing: ppx1 “ 1| . . . q “ 5
8`5 “

5
13 .

Belief for x3: To compute bpx3q, we need the message from the other direction, m1Ñ3px3q.

m1Ñ3px3q “
ÿ

x1

ψ1px1qψ13px1, x3qm2Ñ1px1q

Incoming to 1 is just m2Ñ1 “

„

2
1



. Multiplying by transition ψ13 (summing over x1 means vector-

matrix multiplication from left, or using symmetry):

m1Ñ3 “

„

2 1
1 2

T „
2
1



“

„

2 1
1 2

 „

2
1



“

„

5
4



.

Now, combine all messages arriving at node 3:

bpx3q9ψ3px3qm1Ñ3px3qm4Ñ3px3qm5Ñ3px3q

bpx3q9

„

5
4



d

„

1
2



d

„

1
1



“

„

5
8



.

Normalizing: ppx3 “ 1|x̄2 “ 1, x̄4 “ 1, x̄5 “ 0q “ 8
5`8 “

8
13 .
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