Tutorial: Probabilistic Graphical Models

Independence, Naive Bayes, and Variable Elimination

1 Exercise 1: Conditional Independence (Pruning / Edge Deletion)

Consider the following Directed Acyclic Graph (DAG):

OO

O,

1. Joint Distribution Factorization

p(a,b,c,e, f) = p(a)p(f)p(ela, f)p(blf)p(cle)
2. Verification of Independence
We apply the Pruning / Edge Deletion algorithm. To test X 1 Z | Y:

1. Delete Barren Nodes: Recursively delete leaf nodes not in X u'Y u Z.

2. Delete Outgoing Edges: Remove all edges originating from nodes in the conditioning set
Y.

3. Check Connectivity: If X and Z are disconnected in the undirected skeleton of the resulting
graph, they are independent.

Case (a): Isa L b|c?
Step 1: Delete Nodes
Target set is {a, b, c}.

e Leaves in G: ¢ and b. Both are in the target set.
e Result: No nodes are deleted.

Step 2: Delete Outgoing Edges from Conditioning Set {c}



e Node ¢ has no outgoing edges.

e Result: No edges are deleted.

Step 3: Check Connectivity In the remaining graph (which is identical to the original), is
there a path between a and b7

Conclusion: There is a path a — e — f — b in the undirected skeleton.

atbl|c

Case (b): Isa L b| f?
Step 1: Delete Barren Nodes
Target set is {a, b, f}.

e Node c is a leaf and c ¢ {a,b, f}. Delete c.

After deleting ¢, node e becomes a leaf.
e Node e is a leaf and e ¢ {a,b, f}. Delete e.
e Node a is now a leaf, but a € Target. Keep.

e Node b is a leaf, but b € Target. Keep.
Step 2: Delete Outgoing Edges from Conditioning Set {f}
e Edges starting at f: The edge f — b exists.

e Delete f — b. (Note: f — e was already removed when we deleted node e).

Edge f — b deleted
utgoing from observed)
N

>

0

Nodes ¢, e deleted

Step 3: Check Connectivity In the final graph, node a is isolated and node b is isolated.
There is no path connecting them.

albl|f



2 Exercise 2: Naive Bayes Model

1. Problem Setting

Consider the inference problem of text classification into spam (C' = 1) or not spam (C = 0).
Bag of Words Representation: Suppose we have a dictionary of D words D = {W7,..., Wp}

as an indexable set. A text x is a set of words in the dictionary, i.e., x = {W € D}, which can

equivalently be represented as a set of indices 2’ = {i : W, € z}.

Note: This is a fancy way of saying "appearance of word matters, repetition and order doesn’t
matter”.

Example: Let D = {hello, world, test, is, this, a} with D = 6.

e "hello world" = {hello, world} = {1, 2}

e "this is a test" = {test, is, this, a} = {3,4,5, 6}

e "hello hello hello world" = {1, 2} = "hello world" = "world hello"

Let X = (X1,...,Xp) where X; € {0,1} is a binary random vector denoting the appearance
of the i-th word in the text (e.g., X (hello world) = (1,1,0,0,0,0)). Our goal is to compute the
posterior p(C|X).

2. A General Model

Using Bayes’ theorem, we can write the posterior as:

p(C, X)

p(elx) =T

Since the denominator p(X') does not depend on the specific outcome of C, we have p(C|X)ocp(C, X).
We can factorize p(C, X) into its components using the chain rule:

p(C, X) = p(C)p(X|C)
= p(C)p(X1|C)p(X2| X1, C) ... p(Xg| Xy, ..., Xa—1,0C)

d
= Xl‘C Hp Xi’le---;Xi—I;C)
=2

Graphical Model (General): Since each term is conditioned on all variables that appeared
to its left, the Directed Graphical Model (DGM) is fully connected:

Observations on Complexity:



e This graph has d + 1 nodes (X; to X4, and C).
e The graph is fully connected; every node is a neighbor of every other node.
e For node X;, the number of input edges is i (neighbors C, X1,..., X;_1).

e The size of the conditional probability table (CPT) for each node requires 2#nPut edges
rameters.

e Total # of parameters:

d
14+ Y2 =14 (2% —2) =271 -1
i=1

This equals the number of parameters needed to specify the joint tensor over d 4+ 1 binary
random variables. The complexity scales exponentially.
3. Reducing Complexity with Naive Bayes

Learning 29+ — 1 parameters is very expensive (computationally and learning-theoretically).
Goal: Reduce parameters by simplifying the graphical model.
Method: Remove all edges between (X;, X;); only keep edges originating from C.

()

Naive Bayes (Plate Notation) Naive Bayes (Explicit)

Implied Factorization:
d
p(X,C) = p(C) [ [p(XilC)
i=1

This implies p(X;|X1,...,X;—1,C) = p(X;|C). In other words, X; is independent from X; for all
j # 1 given C.
Conclusion:

e We can manipulate the joint distribution through manipulating the DGM!

e Number of parameters: 1+2d. The complexity now scales linearly instead of exponentially.



3 Exercise 3: Gaussian Log-Likelihood

Gaussian log-likelihood

Suppose we observe some i.i.d. data x1., = {X1,...,X,} from the m-variate Gaussian distribution
N (i1, X). The density is:
1 _ _
fxp, %) = W(det 2)" 2 exp{—3(x — ) TS (x — )}

It is convenient to equivalently express this density in terms of K = ¥ ~1:

fxip, K) =

(27T;m/2 (det K)1/2 exp{—%(x - M>TK<X —m}

after taking logarithms it becomes
1 1
log f(x; 1, K) = —%log@ﬂ) +3 log det K — §(x — ) K(x — p).

Up to the obvious constants that do not depend on p and K, the log-likelihood is

n

L 1
o, K) = 2 log f(xi: 1, K) = (const) + 7 log det(K) — 3 2<x — ) K (x; — 1),

MLE for the Mean p

Irrespective of the value of K, the optimal ji satisfies

1n
ﬂ:in:ggxi

This is because the gradient of V4, is

1 n n ~
Vpuln (. K) = =5 Y@K p—2Kx;) = —nKp+ K ) x; = nK (X — ).
i=1 =1

Since K is invertible, this can be zero if and only if pu = X,,.

Profile Likelihood for K
We can thus consider the profile likelihood

1 n
Uy (Xp, K) = (const) + glogdet(K) —5 Z:(xz — %) K(x; — %p).

Note that



where S, is the sample covariance matrix. Note that X,, and S,, form the sufficient statistics for the
Gaussian model. With this new notation:

ln(Xp, K) = (const) + g(log det(K) — tr(KS,)).

Some useful facts:

e logdet(K) is a strictly concave function of K.
o tr(KS,) is linear in K.
e The gradients are Vi logdet(K) = K~' = ¥ and Vtr(KS,) = S,.

e The MLE is 3 = S, (this is where the gradient vanishes).



4 Exercise 4: Variable Elimination

1. Simple Variable Elimination Example

Consider the following Directed Acyclic Graph (DAG) where we observe the variable X = z7g. We

wish to compute the posterior p(z1|Zs).

Factorization: The corresponding DAG model implies the factorization:
p(x1, ..., w6) = p(x1)p(z2|z1)p(T3]71)p(T4|22)P(25]23)p (26| 74, 5)

Query: We want to compute p(z;|Zg). We start by computing the marginal joint p(z1, Z¢) by
eliminating the hidden variables xp = {x2, x3, x4, x5}

p(z1,T¢) = 222210(931,...,135,i‘6)

Ty T3 T4 T

Using the Variable Elimination algorithm with the ordering 5,4, 3, 2:

p(z1,26) = p(x1) Y plwalwr) D plas|e1) Y p(xalwa) Y p(ws|aes)p(@s|as, z5)

~ v
N~

T1(x3,24,T6)

= p(x1) Y p(asle1) Y plaslen) Y plaales) i (w3, 24, Z6)

T2 T3 T4
- >
~

T2(x2,23,T6)

= p(x1) Y, p(asle1) Y plaslar)ra (w2, 23, Z6)

z2 z3
- /
~-

73(x1,22,Z6)

= p(1) ), p(wsle1) (a1, 22, o)

2
_

—
T4(x1,%6)

Finally, we normalize:
_ p(xl ) jﬁ)
p(a1lTs) = <————
le p(x17 336)



2. Complexity and Elimination Ordering

The computational complexity of Variable Elimination is O(m - k™Vmax*+1) where k is the number of

states per variable and Ny,ax is the maximum number of variables in a sum generated during the

process. The ordering of variables crucially determines Ny, and m is the number of factors.
Consider a model with the following factorization with m = 8:

p(C,D,...) xp(C)p(C, D)o(J, L, S)p(S, I)p(1)p(G, D, (L, G)o(H, G, J)

Example 1: A "Bad" Ordering
Let’s eliminate variables according to the ordering < {G,I,S, L, H,C, D}.

p(J) =D X (C)B(C, D) Y > D 6], L, S) Y, 6(S, (D) Y (G, D, (L, G)p(H, G, J)
D C H L S I G

_/

T(D7LaH7J7I)» Ng=6

T(D7L7H7J73)’ NI:6

7(D,J), N=5,4, then 3
(Simplification of the trace shown for brevity)

e The sum with the largest number of variables participating has Npyax = 6.

e Complexity: O(8 x k°).

Example 2: A "Better" Ordering
Let’s try the Elimination Ordering < {D,C, H, L, S, I,G}.

p(J) = 2 D161 X, 6(8,1) Y ¢(L, G)$(J, L, ) Y | 6(H, G, J) Y 6(C) > 6(G, D, 1)$(C, D)
G I S L H D

C
Looking at the largest factor generated in this sequence, it is 7(G, I, J, L, S), kmax = 5
e Complexity: O(8 x k).

e This demonstrates that choosing a good elimination ordering (finding the optimal one is NP-
hard) significantly impacts inference speed.



5 Exercise 5: Sum-Product on Trees (Numerical Example)

Consider the following tree structure.

To have concrete numbers, suppose all variables are binary x; € {0, 1} and take unary potentials
¥;(x;) = 1. Let the pairwise potentials be defined by the following matrices (where rows/columns
correspond to values 0 and 1):

%2:{; ﬂ, ¢13=E ;], ¢34=B ;:|7 %035:{1 g]

In this notation, the (i, j)—entry of the matrix correspond to ¥ (i, 7).

1. Joint Distribution
The joint distribution is given by:

1
p(x1, T2, T3, T4, T5) = 7

-

Yi(xi)na(xr, w2)nz (@, £3)034 (w3, £4)1P35 (23, T5).

i=1
Conditioning: Let’s fix the values of three variables: To = 1, 4 = 1, T5 = 0. We get:
1
p(r1,1,23,1,0) = §¢12(351, D13(z1, 23)Y34(23, 1)35(23,0).

Direct Calculation: We compute the unnormalized probability values for the remaining free
variables (z1, z3):

1 4
0,1,0,1,0) = —-2-2.1-1= —
p(vva:) 7 7
(01110)—12121—4
by, L, 1, 1, —Z —Z
(11010)—11111—1
paaaa —Z _Z

1 4
1,1,1,1,0) = = -1-2-2-1= —
p(7777) Z Z

Summing these terms (excluding Z): 4 +4 + 1+ 4
distribution p(z1,x3|T2 = 1,24 = 1,75 = 0):

13. From this, we get the conditional

114 4
p(z1,z3]...) = G L 4] (rows x1, cols z3)



2. Message Passing (Marginal Distributions)

Suppose we are interested in the marginal distributions of x; and z3. We compute the message
passing formulas.

Messages from observed leaves:

’rfmﬁl(l‘l) = w2(1)¢12(1‘1, 1) = (CO] 1 Of wlg)

m4_,3(a:3) = 1/}4(1)¢34($3, 1) = (COI 1 Of ¢34)

ms—3(x3) = ¥5(0)35(x3,0) = (Col 0 of 9/35)

-
;14
o
_2_
o
;14

Computing ms_,1(x1): Since x3 is not observed, we sum over it:

ma1(r1) = > s(ws)via(w1, 23)maa(ws)ms s(xs)

Calculating the product of incoming messages to node 3: [;] ©O) E] = [;] . Multiplying by transition

2 1)1 4 . C e
mg_1 = L 2] {2} = [5} . (matrix multiplication here)

Belief for xi:
b(z1) = p(x1|T2, T4, T5) L P1(21)ma1(z1)m3—1(21)

corliof{-[]

Normalizing: p(z; = 1]...) = o = 2.

Belief for z3: To compute b(z3), we need the message from the other direction, m_3(z3).

mia(zs) = > b (w1)is (@1, 23)ma 1 (21)

1

Incoming to 1 is just mo_; = [ 1]. Multiplying by transition 113 (summing over 1 means vector-

matrix multiplication from left, or using symmetry):
mea= [t 3 (=132 (-]
1 2 1 1 2]|1 4
Now, combine all messages arriving at node 3:
b(w3) oc b3 (z3)mi—s(zs)mas(zs)ms—s(zs3)
e [ifolafe 3] - 1)
Normalizing: p(xs = 1|Z2 = 1,74 = 1,75 = 0) = %8 = %.

10
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