Lecture 4: Hidden Markov Models & Monte-Carlo Methods

Thibault Randrianarisoa

University of Toronto, Winter 2026

January 27, 2026

4
3 Statistical Sciences
8 UNIVERSITY OF TORONTO

1/38

Table of contents

® Hidden Markov Models
® Basic Definitions
® Forward/Backward Algorithm
® Viterbi Algorithm
® Monte-Carlo Methods
® Ancestral Sampling
® Simple Monte Carlo
® Importance Sampling
® Rejection Sampling

2/38

Hidden Markov Models (HMMs)

Sequential data

We generally assume data are i.i.d, however this may be a poor assumption:

® Sequential data is common in time-series modelling (e.g. stock prices, speech, video
analysis) or ordered (e.g. textual data, gene sequences).

¢ Recall the general joint factorization via the chain rule

plxir) = [[P(xelxe—1, ..., x1) where p(xi]x0) = p(x1).
t=1

e But this quickly becomes intractable for high-dimensional data: each factor requires
exponentially many parameters to specify as a function of T.

® So we can make the simplifying assumption that our data can be modeled as a first-order
Markov chain

P(Xt‘xlz(t—l)) = p(Xe|xe—1)

4/38

Sequential data

® |n certain cases, Markov chain assumption is also restrictive.

® The state of our variables is not fully observed. Hence, we introduce Hidden Markov
Models

5/38

Hidden Markov Models (HMMs)

¢ HMMs hide the temporal dependence by keeping it in an unobserved state.
® No assumptions on the temporal dependence of observations is made.
® For each observation x;, we associate a corresponding unobserved hidden/latent variable z;

® The joint distribution of the model becomes

T T
p(xuT, z1:7) = plz1 H P Zt|Zt71)H p(xe|ze)
t=2 t=1

6/38

Hidden Markov Models (HMMs)

In HMMs the observations are not limited by a Markov assumption of any order.

Assuming we have homogeneous model (i.e., p(z¢|z:—1) and p(x:|z:) do not depend on t), we
only have to know three sets of distributions:

@ Initial distribution: 7 (i) = p(z, = i). The probability of the first hidden variable being in
state /: often denoted 7 € R,

@® Transition distribution: Aj = p(z;41 = j|z: = i) i€ {l,...,K}. The probability of
moving from hidden state i to hidden state j; A e RKXK.

® Emission probability: p(x; = j|z; = i). The probability of an observed random variable
x; given the state of the hidden variable that "emitted" it.
(Often think about x; as discrete but all that follows also works in the continuous case)

7/38

HMMs: Objectives

We consider the following objectives:

@ Compute the probability of a latent sequence given an observation sequence.
That is, we want to be able to compute p(z1.¢|x1.t). This is achieved with the
Forward-Backward algorithm.

® Infer the most likely sequence of hidden states.
That is, we want to be able to compute

Z* = argmax p(zl:T|X1:T)~
Z1.T

This is achieved using the Viterbi algorithm.

8/38

Example: Part-of-Speech Tagging
® Goal: Assign the correct grammatical tag (e.g., Noun, Verb) to each word in a sentence.
* Hidden States (z;): POS tags (e.g., DET, NOUN, VERB, ADJ).
* Observations (x;): The words in the sentence (e.g., "The", "cat", "sat").

® Transition: p(NOUN|DET) (Likelihood of Noun following Determinant).
® Emission: p("cat"|NOUN) (Likelihood of "cat" being a Noun).

0/38

Forward algorithm

® The goal is to recursively compute the filtered marginals,

= p(zt = j‘Xlzt)~
® Assuming that we know the initial p(z;), transition p(z;|z;—1), and emission p(x;|z;)

probabilities for all 1 <t < T.

® This is a step in the forward-backward algorithm.

10/38

Forward algorithm has two steps

® Prediction step: compute the one-step-ahead predictive density:

Il
=

Il
-

p(zt = jlx1:(t-1)) p(zi—1 =i, 2zt = j|x1:(t-1))

I
D=
3
N

= jlzt—1 = i, x1.0—1)) P(2t—1 = i|X1:(t-1))
i=1
K K
= Z p(ze = jlze—1 = i) = Z Aij = (AT 1),
i1 -1

e Update step: Denoting \:(j) = p(x¢|z: = j) (here x; is fixed and A € R¥)

p(ze = jlxut) = p(zt = jlxa:(e—1), Xe) € p(2t = J, Xe|x1:(¢—1))
= p(xt|ze = j, x1:(e-1))P(2t = jlx1:(e-1))
p(xt|ze = j)p(ze = jlxi:(e-1)) = Ae()p(ze = jlx1:(e-1))

Using matrix notation: a; A+ ® (AT ar—1) [is the Hadamard (entrywise) product]

11/38

Forward-Backward algorithm

This task of hidden state inference breaks down into the following:
* Filtering: compute posterior over current hidden state, p(z:|x1.¢).
* Prediction: compute posterior over future hidden state, p(z;4k|x1:t)-

* Smoothing: compute posterior over past hidden state, p(z:|x1.7) 1<t<T.

The probability of interest, p(z¢|x1.7) is computed using a forward and backward recursion
* Forward Recursion: = p(z: = j|x1.t) [this was computed earlier]
* Backward Recursion: 3:(j) := p(X(t41):7|2: = J)

We assume that we know the initial 7(j) = p(z = j), transition A; = p(z; = jlz;—1 = i), and
emission A\;(j) = p(x¢|z: = j) probabilities for all ¢.

12/38

Forward-Backward algorithm

We can break the chain into two parts, the past and the future, by conditioning on z:
® We have

Ve = p(ze|xw.T) o€ plze, x1.T) = ,D(Zt,X1:t,X(t+1):T)
= P(Zt,X1:t)P(X(t+1);T|Zt,X1:t) = P(Ztyxl:t)P(X(t+1):T|Zt)
o P(X(t+1):712t)
= ()(Backward Recursion)

* Here we use the conditional independence x(;;1).7 L x1.¢|2:.

® We know how to perform forward recursion from the previous part.

13/38

Backward recursion
In the backward pass,
K
Be(i) = p(X(er1y:T|ze = i) = Y p(ze41 = jy Xe1, X(er2)7]2e = i)
j=1
= ZP(X(Hz):T\ZtH = jixt+1,2e = Np(Xet1l|zer1 = j,ze = D)p(ze+1 = jlze = i)

J

= p(X(e42):T|zer1 =))p(xeralzers =)p(zeyr = jlze = i)
J

=1 Ber1(DAes10)Aj
j

In vector notation fB; = A(At+1 ® Bir+1) , where S7(i) = 1.

Forward-backward algorithm [;(j) = p(z; = j|x1.7)]

Once we have the forward and the backward steps complete, we can compute ~v; ca;: © B .

14 /38

Viterbi algorithm

® The Viterbi algorithm (Viterbi 1967) is used to compute the most probable sequence.

2 = argmax p(z1.7|x1.7)
Z1:T

¢ Since this is MAP inference, we might think of replacing sum-operators with
max-operators, just like we did in sum-product and max-product.

e Viterbi algorithm is a specialized version of max-product: the forward pass uses
max-product, and the backward pass uses a traceback procedure to recover the most
probable path.

15 /38

Viterbi algorithm

¢ Define d; via
0¢(j) = max P(Zl:(t71)72t = J,X1:t)

Z1 5.5 Zt—1

which is the probability of ending up in state j at time t, by taking the most probable
path.

e \We notice that

0e(j) = max p(zi(r-1), 2t = J, X1:(t-1), Xt)
215052t —1

Lmax P(21:(t=1)> X1:(e=1))P(2t = jlze—1)p(xt|zt = J)

= ml,ale max , p(zl:(t,z),zt,1 = ’.x,Xl:(tfl))P(Zt =jlze—1 = i)p(xt|ze = J)
yeeerZp

= mlaxét_l(i)A,-j)\t(j)
* Keep track of the most likely previous state: 8.(j) = argmax; §:—1(7)AjA:(j) -

16 /38

Viterbi algorithm

® Initialize the algorithm with
61() = p(z1 = j, x1) = miA1 ().

¢ and terminate with
z¥ = argmaxdr (i)
1

® Then, we compute the most probable sequence of states using traceback:

Zt* = 9t+1(25k+1)

17 /38

Summary: HMMs

HMMs hide the temporal dependence by keeping it in the unobserved state.
No assumptions on the temporal dependence of observations is made.
Forward-backward algorithm can be used to find "beliefs".

Viterbi algorithm can be used to do MAP.

18/38

Monte-Carlo Methods

Sampling

* A sample from a distribution p(x) is a single realization x whose probability distribution is
p(x). Here, x can be high-dimensional.

® Assumption: The density from which we sample, p(x), can be evaluated to within a
multiplicative constant. That is, we have j(x) such that

p(x)
p(x) = Z

20/38

Warm up: Ancestral Sampling

e Given a DAGM, and the ability to sample from each of its factors given its parents, we can
sample from the joint distribution over all the nodes by ancestral sampling.

e Start with nodes that have no parents. Sample them from the corresponding marginal
distributions.

e At each step, sample from any conditional distribution that you haven't visited yet, whose
parents have all been sampled.

21/38

(2)
&)

Ancestral Sampling: example

The distribution graph factorizes according to the DAG

5
p(X1, ..., x5) = n p(x;|parents(x;))

1

= p(x1)p(x2|x1)p(x3]x1) p(xa|x2, x3) p(x5]x3)

Start by sampling from p(xy).
Then sample from p(xz2|x1) and p(x3|x1).
Then sample from p(x4|x2, x3).

Finally, sample from p(xs|x3).

22/38

Main objectives of sampling

Use Monte Carlo methods to solve one or both of the following problems.

* Problem 1: Generate samples {x(7}R_| from p(x).

® Problem 2: To estimate expectations of functions, ¢(x), under this distribution p(x)

The function ¢ is called a test function.

23/38

Example

Examples of test functions ¢(x):
* the mean of a function f(x) under p(x) by finding the expectation of the function
od1(x) = f(x).
* the variance of f under p(x) by finding the expectations of the functions ¢;(x) = f(x)
and ¢o(x) = f(x)?
P1(x) = F(x) = ®1 = Exrpole1(x)]
$2(x) = f(x)? = &2 = Expi[02(x)]
= var(f(x)) = & — (d1)?

24 /38

Estimation problem

We start with the estimation problem using simple Monte Carlo:

* Simple Monte Carlo: Given {x(")}R | ~ p(x) we can estimate the expectation
Ey<px)[@(x)] using the estimator ®:

O = Bypo[6()] ~ = > 6(x) = &

* The fact that ® is a consistent estimator of ® follows from the Law of Large Numbers
(LLN).

25/38

Basic properties of Monte Carlo estimation

* Unbiasedness: If the vectors {x(' * , are all generated (independently or not) from
p(x), then the expectation of b is <1>. Indeed,

Ry \

E[®] = E [] 1Z]E

r=1

[y

I
1=

E I['Ex~p(><) [(b()] gEx~P(X) [(b()]
=0

26/38

Simple properties of Monte Carlo estimation

e Variance: As the number of samples of R increases, the variance of & will decrease with
rate % if the samples are independent

R
2 Z var [gb(x('))] = %var[gb(x)] = Svar[¢(x)]

Accuracy of the Monte Carlo estimate depends on R and on the variance of ¢.

27 /38

Normalizing constant

® Assume we know the density p(x) up to a multiplicative constant

_ Ax)
p(x) = A

® There are two difficulties:

® We do not generally know the normalizing constant, Z. Computing

Z= Jﬁ(x)dx

requires a high-dimensional integral or sum.
® Even if we did know Z, the problem of drawing samples from p(x) is still a challenging one,
especially in high-dimensional spaces.

28/38

Bad |dea: Lattice Discretization

Suppose we want to sample from p(x) for which p(x) is given in figure (a).

B(x) p(x)

(@) (b)

® How to compute Z7
® We could discretize the variable x and sample from the discrete distribution.

® In figure (b) there are 50 uniformly spaced points in one dimension. If our system had,
D = 1000 dimensions say, then the corresponding number of points would be
500 = 501000 Thus, the cost is exponential in dimension!

20/38

Estimation tool: Importance Sampling
Importance sampling: to estimate the expectation of a function ¢(x).

¢ The density from which we wish to draw samples can be evaluated up to normalizing
constant. As before, we have p(x) = p(x)/Z.

® There is a simpler density, g(x) from which it is easy to sample from and easy to evaluate
up to normalizing constant (i.e. §(x))

G(x)
q(x) = ?q

30/38

Estimation tool: Importance Sampling

In importance sampling, we generate R samples from g(x)

X~ g0

If these points were samples from p(x) then we could estimate ® by

That is, we could use a simple Monte Carlo estimator.
But we sampled from g. We need to correct this!

Values of x where g(x) is greater than p(x) will be over-represented in this estimator, and
points where g(x) is less than p(x) will be under-represented. Thus, we introduce weights.

31/38

Est|mat|on tool: Importance Sampling

Bx) _ Zpp(x")
G) Zyq(x)

P{X X
r N Lix~q(x = = d*
REW E q()|: X:| J X X

® Finally, we rewrite our estimator under ¢

X x(r)
= [otaptia = [o002 ad 2¢) e =)

® However, the estimator relies on p. It can only rely on 5 and §.

R ~ X(r) R
()= 1% Do) BT - 2L S o0y
YR 6d)

1 R -
R Zr:l Wy r=1
Wy

where w, = < and ®,, is our importance weighted estimator.

r=1Wr

¢ |ntroduce weights: w, = and notice that

32/38

Rejection Sampling: Intuition

Key Intuition:

To sample uniformly from a complex domain D, we
can sample uniformly from a larger, simpler domain
C and keep only the realizations that fall within D.

Example: Unit Disk
e Target D: Unit disk
{(x,y) eR?: x> + y?2 < 1}.
® Proposal C: Square [—1,1] x [—1,1].

Procedure:
® Sample (U, V) ~U([-1,1]?).
@® Accept if X% + Y2 <1 (Blue).
©® Reject otherwise (Gray).

Illustration of rejection sampling for the unit disk.

33/38

Sampling tool: Rejection sampling

i *
* We want expectations under p(x) = pZ(X>-
P

® Assume that we have a simpler proposal density g(x) which we can evaluate (within a
multiplicative factor Z,, as before), and from which we can generate samples, i.e.

g (x) = Zg-q(x)

e Further assume that we know the value of a constant ¢ such that

Vx, g (x) > p*(x)

34/38

Sampling tool: Rejection sampling

(a) LA (b)

’, N Q' (x)
N

The procedure is as follows:
® Generate two random numbers.

@ x is generated from g(x).
@® u is generated uniformly from the interval [0, cg™(x)].

@® Accept or reject the sample x by comparing the value of u with p*(x)

@ If u> p*(x), then x is rejected.
@® Otherwise x is accepted; x is added to our set of samples {x("}.

35/38

Why does rejection sampling work?
(i) x ~ q(x), (i) u|x ~ Unif[0, cg™(x)], (iii) accept x if u < p*(x).

* Note:]P’(u p¥(x)|x) = Cp;;((XX)) (remember we assume p*(x) < cg*(x)).

* VAC X: Pep(xeA)=§,p(x)dx = {1 eap(x)dx = Exop[Lixeny]-
® Law of total expectation E[E[Z|H]] = EZ
This gives:

Pyg(x € A u < p*(x))
Eynq[P(u < p*(x)[x)]

—Emdmﬁww<wuwnmhﬁ

Povqlx € Alu < p*(x)) =

p*(x)
cq*(x)
p*(x) Zp Zp 14

=Exug | lixest——= | /—= = Pyn A —
a [{xea} cq* (x)] /ch plx e)ch cZ,

=Py p(x € A).

| S

36 /38

Rejection sampling in many dimensions

* In high-dimensional problems, the requirement that cg*(x) = p*(x) will force ¢ to be
huge, so acceptances will be very rare.

¢ Finding such a value of ¢ may be difficult too, since we don't know where the modes of
p* are located nor how high they are.

® In general ¢ grows exponentially with the dimensionality, so the acceptance rate is
expected to be exponentially small in dimension

area under p* Z,
acceptancerate = ——— = —
area under cp* cZ,4

37/38

Summary

e Estimating expectations is an important problem, which is in general hard. We learned 3
sampling-based tools for this task:

® Simple Monte Carlo
® Importance Sampling
® Rejection Sampling

® Next lecture, we will learn more refined techniques.

38 /38

	Hidden Markov Models

