

Lecture 4: Hidden Markov Models & Monte-Carlo Methods

Thibault Randrianarisoa

University of Toronto, Winter 2026

January 27, 2026

① Hidden Markov Models

- Basic Definitions
- Forward/Backward Algorithm
- Viterbi Algorithm

② Monte-Carlo Methods

- Ancestral Sampling
- Simple Monte Carlo
- Importance Sampling
- Rejection Sampling

Hidden Markov Models (HMMs)

Sequential data

We generally assume data are i.i.d, however this may be a poor assumption:

- Sequential data is common in time-series modelling (e.g. stock prices, speech, video analysis) or ordered (e.g. textual data, gene sequences).
- Recall the general joint factorization via the chain rule

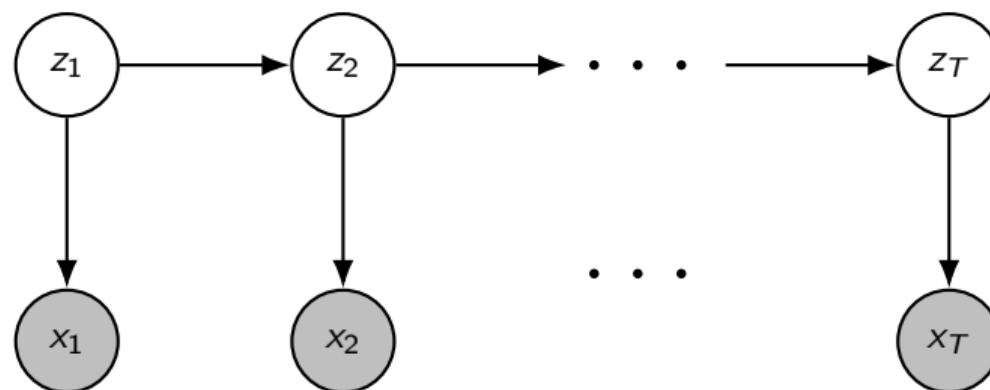
$$p(x_{1:T}) = \prod_{t=1}^T p(x_t | x_{t-1}, \dots, x_1) \quad \text{where } p(x_1 | x_0) = p(x_1).$$

- But this quickly becomes intractable for high-dimensional data: each factor requires **exponentially** many parameters to specify as a function of T .
- So we can make the simplifying assumption that our data can be modeled as a **first-order Markov chain**

$$p(x_t | x_{1:(t-1)}) = p(x_t | x_{t-1})$$

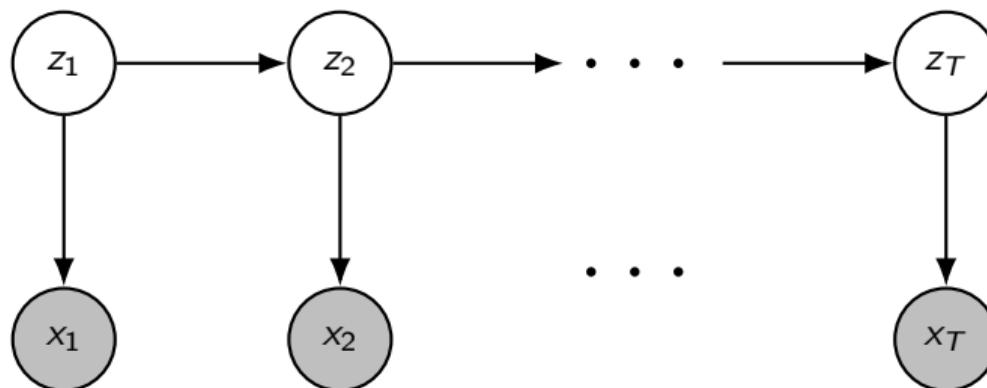
Sequential data

- In certain cases, Markov chain assumption is also restrictive.
- The state of our variables is not fully observed. Hence, we introduce Hidden Markov Models



Hidden Markov Models (HMMs)

- HMMs hide the temporal dependence by keeping it in an unobserved state.
- No assumptions on the temporal dependence of observations is made.
- For each observation x_t , we associate a corresponding unobserved hidden/latent variable z_t



- The joint distribution of the model becomes

$$p(x_{1:T}, z_{1:T}) = p(z_1) \prod_{t=2}^T p(z_t | z_{t-1}) \prod_{t=1}^T p(x_t | z_t)$$

Hidden Markov Models (HMMs)

In HMMs the observations are not limited by a Markov assumption of any order.

Assuming we have **homogeneous model** (i.e., $p(z_t|z_{t-1})$ and $p(x_t|z_t)$ do not depend on t), we only have to know three sets of distributions:

- ① **Initial distribution:** $\pi(i) = p(z_1 = i)$. The probability of the first hidden variable being in state i ; often denoted $\pi \in \mathbb{R}^K$.
- ② **Transition distribution:** $A_{ij} = p(z_{t+1} = j|z_t = i) \quad i \in \{1, \dots, K\}$. The probability of moving from hidden state i to hidden state j ; $A \in \mathbb{R}^{K \times K}$.
- ③ **Emission probability:** $p(x_t = j|z_t = i)$. The probability of an observed random variable x_t given the state of the hidden variable that "emitted" it.
(Often think about x_t as discrete but all that follows also works in the continuous case)

We consider the following objectives:

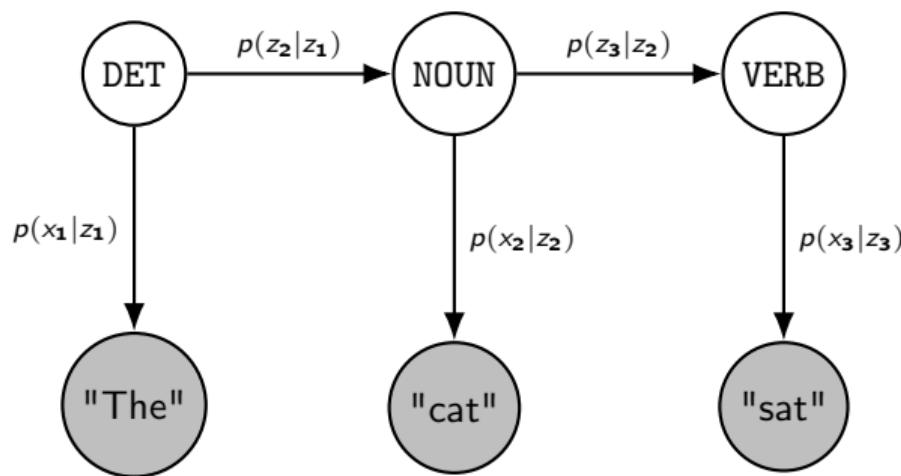
- ① Compute the probability of a latent sequence given an observation sequence.
That is, we want to be able to **compute** $p(z_{1:t}|x_{1:t})$. This is achieved with the **Forward-Backward algorithm**.
- ② Infer the most likely sequence of hidden states.
That is, we want to be able to **compute**

$$z^* = \underset{z_{1:T}}{\operatorname{argmax}} p(z_{1:T}|x_{1:T}).$$

This is achieved using the **Viterbi algorithm**.

Example: Part-of-Speech Tagging

- **Goal:** Assign the correct grammatical tag (e.g., Noun, Verb) to each word in a sentence.
- **Hidden States (z_t):** POS tags (e.g., DET, NOUN, VERB, ADJ).
- **Observations (x_t):** The words in the sentence (e.g., "The", "cat", "sat").



- **Transition:** $p(\text{NOUN}|\text{DET})$ (Likelihood of Noun following Determinant).
- **Emission:** $p(\text{"cat"}|\text{NOUN})$ (Likelihood of "cat" being a Noun).

Forward algorithm

- The goal is to recursively compute the **filtered marginals**,

$$\alpha_t(j) = p(z_t = j | x_{1:t}).$$

- Assuming that we know the initial $p(z_1)$, transition $p(z_t | z_{t-1})$, and emission $p(x_t | z_t)$ probabilities for all $1 \leq t \leq T$.
- This is a step in the **forward-backward algorithm**.

Forward algorithm has two steps

- **Prediction step:** compute the one-step-ahead predictive density:

$$\begin{aligned} p(z_t = j | x_{1:(t-1)}) &= \sum_{i=1}^K p(z_{t-1} = i, z_t = j | x_{1:(t-1)}) \\ &= \sum_{i=1}^K p(z_t = j | z_{t-1} = i, x_{1:(t-1)}) p(z_{t-1} = i | x_{1:(t-1)}) \\ &= \sum_{i=1}^K p(z_t = j | z_{t-1} = i) \color{orange} p(z_{t-1} = i | x_{1:(t-1)}) = \sum_{i=1}^K A_{ij} \color{orange} \alpha_{t-1}(i) = (A^\top \alpha_{t-1})_j \end{aligned}$$

- **Update step:** Denoting $\lambda_t(j) = p(x_t | z_t = j)$ (here x_t is fixed and $\lambda_t \in \mathbb{R}^K$)

$$\begin{aligned} \color{orange} \alpha_t(j) &= p(z_t = j | x_{1:t}) = p(z_t = j | x_{1:(t-1)}, x_t) \propto p(z_t = j, x_t | x_{1:(t-1)}) \\ &= p(x_t | z_t = j, x_{1:(t-1)}) \color{blue} p(z_t = j | x_{1:(t-1)}) \\ &= p(x_t | z_t = j) \color{blue} p(z_t = j | x_{1:(t-1)}) = \color{red} \lambda_t(j) \color{blue} p(z_t = j | x_{1:(t-1)}) \end{aligned}$$

Using matrix notation:

$$\alpha_t \propto \lambda_t \odot (A^\top \alpha_{t-1})$$

[\odot is the Hadamard (entrywise) product]

Forward-Backward algorithm

This task of hidden state inference breaks down into the following:

- **Filtering**: compute posterior over current hidden state, $p(z_t|x_{1:t})$.
- **Prediction**: compute posterior over future hidden state, $p(z_{t+k}|x_{1:t})$.
- **Smoothing**: compute posterior over past hidden state, $p(z_t|x_{1:T}) \quad 1 \leq t < T$.

The probability of interest, $p(z_t|x_{1:T})$ is computed using a forward and backward recursion

- **Forward Recursion**: $\alpha_t(j) = p(z_t = j|x_{1:t})$ [this was computed earlier]
- **Backward Recursion**: $\beta_t(j) := p(x_{(t+1):T}|z_t = j)$

We assume that we know the initial $\pi(j) = p(z_1 = j)$, transition $A_{ij} = p(z_t = j|z_{t-1} = i)$, and emission $\lambda_t(j) = p(x_t|z_t = j)$ probabilities for all t .

Forward-Backward algorithm

We can break the chain into two parts, the past and the future, by conditioning on z_t :

- We have

$$\begin{aligned}\gamma_t &:= p(z_t | x_{1:T}) \propto p(z_t, x_{1:T}) = p(z_t, x_{1:t}, x_{(t+1):T}) \\ &= p(z_t, x_{1:t})p(x_{(t+1):T} | z_t, x_{1:t}) = p(z_t, x_{1:t})p(x_{(t+1):T} | z_t) \\ &\propto p(z_t | x_{1:t})p(x_{(t+1):T} | z_t) \\ &= (\text{Forward Recursion})(\text{Backward Recursion})\end{aligned}$$

- Here we use the conditional independence $x_{(t+1):T} \perp x_{1:t} | z_t$.
- We know how to perform forward recursion from the previous part.

Backward recursion

In the backward pass,

$$\begin{aligned}\beta_t(i) &= p(x_{(t+1):T} | z_t = i) = \sum_{j=1}^K p(z_{t+1} = j, x_{t+1}, x_{(t+2):T} | z_t = i) \\ &= \sum_j p(x_{(t+2):T} | z_{t+1} = j, x_{t+1}, z_t = i) p(x_{t+1} | z_{t+1} = j, z_t = i) p(z_{t+1} = j | z_t = i) \\ &= \sum_j p(x_{(t+2):T} | z_{t+1} = j) p(x_{t+1} | z_{t+1} = j) p(z_{t+1} = j | z_t = i) \\ &= \sum_j \beta_{t+1}(j) \lambda_{t+1}(j) A_{ij}\end{aligned}$$

In vector notation $\beta_t = A(\lambda_{t+1} \odot \beta_{t+1})$, where $\beta_T(i) = 1$.

Forward-backward algorithm $[\gamma_t(j) = p(z_t = j | x_{1:T})]$

Once we have the forward and the backward steps complete, we can compute $\gamma_t \propto \alpha_t \odot \beta_t$.

Viterbi algorithm

- The Viterbi algorithm (Viterbi 1967) is used to compute the most probable sequence.

$$\hat{z} = \arg \max_{z_{1:T}} p(z_{1:T} | x_{1:T})$$

- Since this is MAP inference, we might think of replacing sum-operators with max-operators, just like we did in sum-product and max-product.
- Viterbi algorithm is a specialized version of max-product: the forward pass uses max-product, and the backward pass uses a **traceback procedure** to recover the most probable path.

Viterbi algorithm

- Define δ_t via

$$\delta_t(j) = \max_{z_1, \dots, z_{t-1}} p(z_{1:(t-1)}, z_t = j, x_{1:t})$$

which is the probability of ending up in state j at time t , by taking the most probable path.

- We notice that

$$\begin{aligned}\delta_t(j) &= \max_{z_1, \dots, z_{t-1}} p(z_{1:(t-1)}, z_t = j, x_{1:(t-1)}, x_t) \\ &= \max_{z_1, \dots, z_{t-1}} p(z_{1:(t-1)}, x_{1:(t-1)}) p(z_t = j | z_{t-1}) p(x_t | z_t = j) \\ &= \max_i \max_{z_1, \dots, z_{t-2}} p(z_{1:(t-2)}, z_{t-1} = i, x_{1:(t-1)}) p(z_t = j | z_{t-1} = i) p(x_t | z_t = j) \\ &= \max_i \delta_{t-1}(i) A_{ij} \lambda_t(j)\end{aligned}$$

- Keep track of the most likely previous state: $\theta_t(j) = \arg \max_i \delta_{t-1}(i) A_{ij} \lambda_t(j)$.

Viterbi algorithm

- Initialize the algorithm with

$$\delta_1(j) = p(z_1 = j, x_1) = \pi_j \lambda_1(j).$$

- and terminate with

$$z_T^* = \arg \max_i \delta_T(i)$$

- Then, we compute the most probable sequence of states using traceback:

$$z_t^* = \theta_{t+1}(z_{t+1}^*)$$

Summary: HMMs

- HMMs hide the temporal dependence by keeping it in the unobserved state.
- No assumptions on the temporal dependence of observations is made.
- Forward-backward algorithm can be used to find "beliefs".
- Viterbi algorithm can be used to do MAP.

Monte-Carlo Methods

- A sample from a distribution $p(x)$ is a single realization x whose probability distribution is $p(x)$. Here, x can be high-dimensional.
- **Assumption:** The density from which we sample, $p(x)$, can be evaluated to within a multiplicative constant. That is, we have $\tilde{p}(x)$ such that

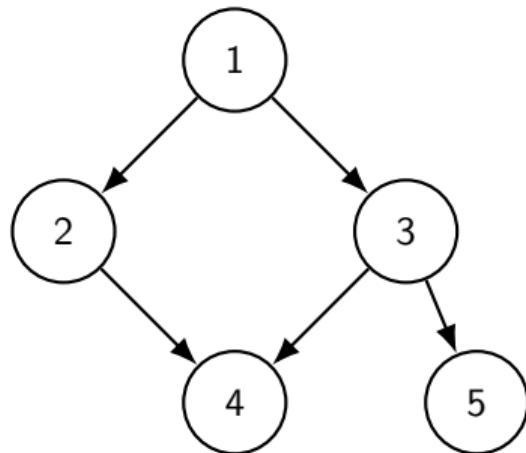
$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

Warm up: Ancestral Sampling

- Given a DAGM, and the ability to sample from each of its factors given its parents, we can sample from the joint distribution over all the nodes by **ancestral sampling**.
- Start with nodes that have no parents. Sample them from the corresponding marginal distributions.
- At each step, sample from any conditional distribution that you haven't visited yet, whose parents have all been sampled.

Ancestral Sampling: example

- The distribution graph factorizes according to the DAG



$$\begin{aligned} p(x_1, \dots, x_5) &= \prod_i^5 p(x_i | \text{parents}(x_i)) \\ &= p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2, x_3)p(x_5|x_3) \end{aligned}$$

- Start by sampling from $p(x_1)$.
- Then sample from $p(x_2|x_1)$ and $p(x_3|x_1)$.
- Then sample from $p(x_4|x_2, x_3)$.
- Finally, sample from $p(x_5|x_3)$.

Main objectives of sampling

Use Monte Carlo methods to solve one or both of the following problems.

- **Problem 1:** Generate samples $\{x^{(r)}\}_{r=1}^R$ from $p(x)$.
- **Problem 2:** To estimate expectations of functions, $\phi(x)$, under this distribution $p(x)$

$$\Phi = \mathbb{E}_{x \sim p(x)}[\phi(x)] = \int \phi(x)p(x)dx$$

The function ϕ is called a *test function*.

Example

Examples of test functions $\phi(x)$:

- the **mean** of a function $f(x)$ under $p(x)$ by finding the expectation of the function $\phi_1(x) = f(x)$.
- the **variance** of f under $p(x)$ by finding the expectations of the functions $\phi_1(x) = f(x)$ and $\phi_2(x) = f(x)^2$

$$\phi_1(x) = f(x) \Rightarrow \Phi_1 = \mathbb{E}_{x \sim p(x)}[\phi_1(x)]$$

$$\phi_2(x) = f(x)^2 \Rightarrow \Phi_2 = \mathbb{E}_{x \sim p(x)}[\phi_2(x)]$$

$$\Rightarrow \text{var}(f(x)) = \Phi_2 - (\Phi_1)^2$$

Estimation problem

We start with the estimation problem using simple Monte Carlo:

- **Simple Monte Carlo:** Given $\{x^{(r)}\}_{r=1}^R \sim p(x)$ we can estimate the expectation $\mathbb{E}_{x \sim p(x)}[\phi(x)]$ using the estimator $\hat{\Phi}$:

$$\Phi := \mathbb{E}_{x \sim p(x)}[\phi(x)] \approx \frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) := \hat{\Phi}$$

- The fact that $\hat{\Phi}$ is a consistent estimator of Φ follows from the Law of Large Numbers (LLN).

Basic properties of Monte Carlo estimation

- **Unbiasedness:** If the vectors $\{x^{(r)}\}_{r=1}^R$ are all generated (independently or not) from $p(x)$, then the expectation of $\hat{\Phi}$ is Φ . Indeed,

$$\begin{aligned}\mathbb{E}[\hat{\Phi}] &= \mathbb{E}\left[\frac{1}{R} \sum_{r=1}^R \phi(x^{(r)})\right] = \frac{1}{R} \sum_{r=1}^R \mathbb{E}[\phi(x^{(r)})] \\ &= \frac{1}{R} \sum_{r=1}^R \mathbb{E}_{x \sim p(x)}[\phi(x)] = \frac{R}{R} \mathbb{E}_{x \sim p(x)}[\phi(x)] \\ &= \Phi\end{aligned}$$

Simple properties of Monte Carlo estimation

- **Variance:** As the number of samples of R increases, the variance of $\hat{\Phi}$ will decrease with rate $\frac{1}{R}$ if the **samples are independent**

$$\begin{aligned}\text{var}[\hat{\Phi}] &= \text{var} \left[\frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) \right] = \frac{1}{R^2} \text{var} \left[\sum_{r=1}^R \phi(x^{(r)}) \right] \\ &= \frac{1}{R^2} \sum_{r=1}^R \text{var} \left[\phi(x^{(r)}) \right] = \frac{R}{R^2} \text{var}[\phi(x)] = \frac{1}{R} \text{var}[\phi(x)]\end{aligned}$$

Accuracy of the Monte Carlo estimate depends on R and on the variance of ϕ .

Normalizing constant

- Assume we know the density $p(x)$ up to a multiplicative constant

$$p(x) = \frac{\tilde{p}(x)}{Z}$$

- There are two difficulties:

- We do not generally know the normalizing constant, Z . Computing

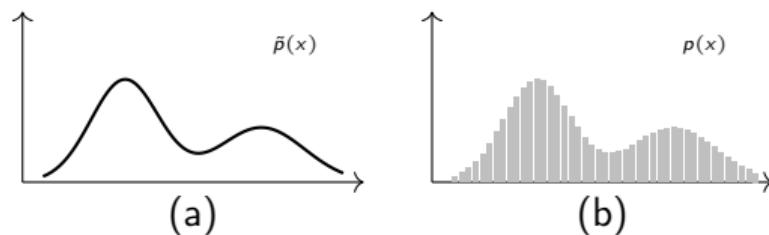
$$Z = \int \tilde{p}(x) dx$$

requires a high-dimensional integral or sum.

- Even if we did know Z , the problem of drawing samples from $p(x)$ is still a challenging one, especially in high-dimensional spaces.

Bad Idea: Lattice Discretization

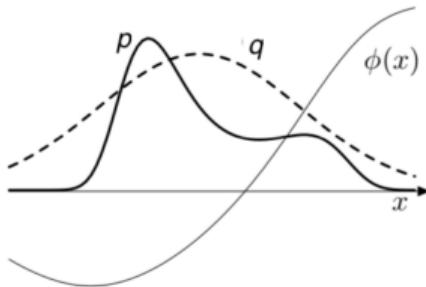
Suppose we want to sample from $p(x)$ for which $\tilde{p}(x)$ is given in figure (a).



- How to compute Z ?
- We could discretize the variable x and sample from the discrete distribution.
- In figure (b) there are 50 uniformly spaced points in one dimension. If our system had, $D = 1000$ dimensions say, then the corresponding number of points would be $50^D = 50^{1000}$. Thus, **the cost is exponential in dimension!**

Estimation tool: Importance Sampling

Importance sampling: to estimate the expectation of a function $\phi(x)$.



- The density from which we wish to draw samples can be evaluated up to normalizing constant. As before, we have $p(x) = \tilde{p}(x)/Z$.
- There is a simpler density, $q(x)$ from which it is easy to sample from and easy to evaluate up to normalizing constant (i.e. $\tilde{q}(x)$)

$$q(x) = \frac{\tilde{q}(x)}{Z_q}$$

Estimation tool: Importance Sampling

- In importance sampling, we generate R samples from $q(x)$

$$\{x^{(r)}\}_{r=1}^R \sim q(x)$$

- If these points were samples from $p(x)$ then we could estimate Φ by

$$\Phi = \mathbb{E}_{x \sim p(x)}[\phi(x)] \approx \frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) = \hat{\Phi}$$

That is, we could use a simple Monte Carlo estimator.

- But we sampled from q . **We need to correct this!**
- Values of x where $q(x)$ is greater than $p(x)$ will be over-represented in this estimator, and points where $q(x)$ is less than $p(x)$ will be under-represented. Thus, **we introduce weights**.

Estimation tool: Importance Sampling

- Introduce weights: $\tilde{w}_r = \frac{\tilde{p}(x^{(r)})}{\tilde{q}(x^{(r)})} = \frac{Z_p p(x^{(r)})}{Z_q q(x^{(r)})}$ and notice that

$$\frac{1}{R} \sum_{r=1}^R \tilde{w}_r \approx \mathbb{E}_{x \sim q(x)} \left[\frac{\tilde{p}(x)}{\tilde{q}(x)} \right] = \frac{Z_p}{Z_q} \int \frac{p(x)}{q(x)} q(x) dx = \frac{Z_p}{Z_q}$$

- Finally, we rewrite our estimator under q

$$\Phi = \int \phi(x) p(x) dx = \int \phi(x) \frac{p(x)}{q(x)} q(x) dx \approx \frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) \frac{p(x^{(r)})}{q(x^{(r)})} = (*)$$

- However, the estimator relies on p . It can only rely on \tilde{p} and \tilde{q} .

$$\begin{aligned} (*) &= \frac{Z_q}{Z_p} \frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) \cdot \frac{\tilde{p}(x^{(r)})}{\tilde{q}(x^{(r)})} = \frac{Z_q}{Z_p} \frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) \cdot \tilde{w}_r \\ &\approx \frac{\frac{1}{R} \sum_{r=1}^R \phi(x^{(r)}) \cdot \tilde{w}_r}{\frac{1}{R} \sum_{r=1}^R \tilde{w}_r} = \sum_{r=1}^R \phi(x^{(r)}) \cdot w_r = \hat{\Phi}_{iw} \end{aligned}$$

where $w_r = \frac{\tilde{w}_r}{\sum_{r=1}^R \tilde{w}_r}$ and $\hat{\Phi}_{iw}$ is our importance weighted estimator.

Rejection Sampling: Intuition

Key Intuition:

To sample uniformly from a complex domain D , we can sample uniformly from a larger, simpler domain C and keep only the realizations that fall within D .

Example: Unit Disk

- **Target D :** Unit disk $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.
- **Proposal C :** Square $[-1, 1] \times [-1, 1]$.

Procedure:

- ① Sample $(U, V) \sim \mathcal{U}([-1, 1]^2)$.
- ② **Accept** if $X^2 + Y^2 \leq 1$ (Blue).
- ③ **Reject** otherwise (Gray).

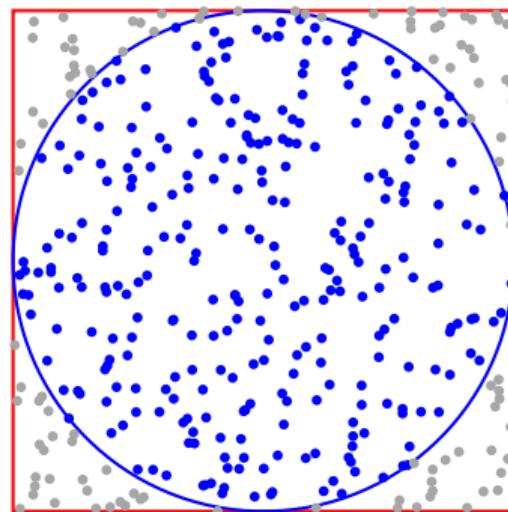


Illustration of rejection sampling for the unit disk.

Sampling tool: Rejection sampling

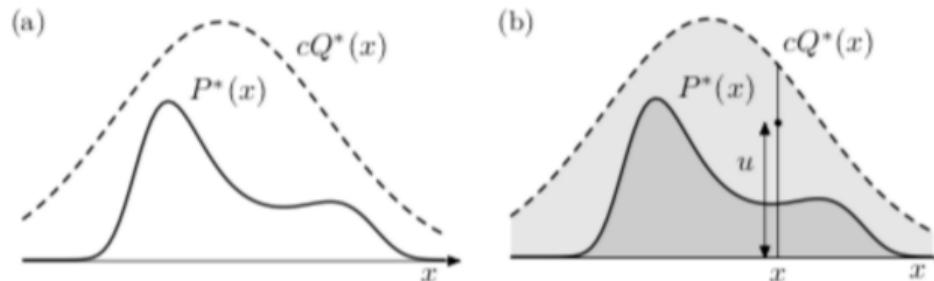
- We want expectations under $p(x) = \frac{p^*(x)}{Z_p}$.
- Assume that we have a simpler proposal density $q(x)$ which we can evaluate (within a multiplicative factor Z_q , as before), and from which we can generate samples, i.e.

$$q^*(x) = Z_q \cdot q(x)$$

- Further assume that we know the value of a constant c such that

$$\forall x, \quad cq^*(x) > p^*(x)$$

Sampling tool: Rejection sampling



The procedure is as follows:

- ① Generate two random numbers.
 - ① x is generated from $q(x)$.
 - ② u is generated uniformly from the interval $[0, cq^*(x)]$.
- ② Accept or reject the sample x by comparing the value of u with $p^*(x)$
 - ① If $u > p^*(x)$, then x is rejected.
 - ② Otherwise x is accepted; x is added to our set of samples $\{x^{(r)}\}$.

Why does rejection sampling work?

(i) $x \sim q(x)$, (ii) $u|x \sim \text{Unif}[0, cq^*(x)]$, (iii) accept x if $u \leq p^*(x)$.

- Note: $\mathbb{P}(u \leq p^*(x)|x) = \frac{p^*(x)}{cq^*(x)}$ (remember we assume $p^*(x) < cq^*(x)$).
- $\forall A \subseteq \mathcal{X} : \mathbb{P}_{x \sim p}(x \in A) = \int_A p(x)dx = \int \mathbf{1}_{\{x \in A\}} p(x)dx = \mathbb{E}_{x \sim p}[\mathbf{1}_{\{x \in A\}}]$.
- Law of total expectation $\mathbb{E}[\mathbb{E}[Z|\mathcal{H}]] = \mathbb{E}Z$

This gives:

$$\begin{aligned}\mathbb{P}_{x \sim q}(x \in A|u \leq p^*(x)) &= \frac{\mathbb{P}_{x \sim q}(x \in A, u \leq p^*(x))}{\mathbb{E}_{x \sim q}[\mathbb{P}(u \leq p^*(x)|x)]} \\ &= \mathbb{E}_{x \sim q}[\mathbf{1}_{\{x \in A\}} \mathbb{P}(u \leq p^*(x)|x)] / \mathbb{E}_{x \sim q}\left[\frac{p^*(x)}{cq^*(x)}\right] \\ &= \mathbb{E}_{x \sim q}\left[\mathbf{1}_{\{x \in A\}} \frac{p^*(x)}{cq^*(x)}\right] / \frac{Z_p}{cZ_q} = \mathbb{P}_{x \sim p}(x \in A) \frac{Z_p}{cZ_q} / \frac{Z_p}{cZ_q} \\ &= \mathbb{P}_{x \sim p}(x \in A).\end{aligned}$$

Rejection sampling in many dimensions

- In high-dimensional problems, the requirement that $cq^*(x) \geq p^*(x)$ will force c to be huge, so acceptances will be very rare.
- Finding such a value of c may be difficult too, since we don't know where the modes of p^* are located nor how high they are.
- In general c grows exponentially with the dimensionality, so the acceptance rate is expected to be exponentially small in dimension

$$\text{acceptance rate} = \frac{\text{area under } p^*}{\text{area under } cp^*} = \frac{Z_p}{cZ_q}$$

Summary

- Estimating expectations is an important problem, which is in general hard. We learned 3 sampling-based tools for this task:
 - Simple Monte Carlo
 - Importance Sampling
 - Rejection Sampling
- Next lecture, we will learn more refined techniques.