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Hidden Markov Models (HMMs)
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Sequential data

We generally assume data are i.i.d, however this may be a poor assumption:
‚ Sequential data is common in time-series modelling (e.g. stock prices, speech, video

analysis) or ordered (e.g. textual data, gene sequences).
‚ Recall the general joint factorization via the chain rule

ppx1:T q “

T
ź

t“1

ppxt |xt´1, . . . , x1q where ppx1|x0q “ ppx1q.

‚ But this quickly becomes intractable for high-dimensional data: each factor requires
exponentially many parameters to specify as a function of T.

‚ So we can make the simplifying assumption that our data can be modeled as a first-order
Markov chain

ppxt |x1:pt´1qq “ ppxt |xt´1q
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Sequential data

‚ In certain cases, Markov chain assumption is also restrictive.
‚ The state of our variables is not fully observed. Hence, we introduce Hidden Markov

Models

z1 z2 . . . zT

x1 x2

. . .
xT
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Hidden Markov Models (HMMs)
‚ HMMs hide the temporal dependence by keeping it in an unobserved state.
‚ No assumptions on the temporal dependence of observations is made.
‚ For each observation xt , we associate a corresponding unobserved hidden/latent variable zt

z1 z2 . . . zT

x1 x2

. . .
xT

‚ The joint distribution of the model becomes

ppx1:T , z1:T q “ ppz1q
T
ź

t“2

ppzt |zt´1q

T
ź

t“1

ppxt |ztq
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Hidden Markov Models (HMMs)

In HMMs the observations are not limited by a Markov assumption of any order.

Assuming we have homogeneous model (i.e., ppzt |zt´1q and ppxt |ztq do not depend on t), we
only have to know three sets of distributions:

1 Initial distribution: πpiq “ ppz1 “ iq. The probability of the first hidden variable being in
state i ; often denoted π P RK .

2 Transition distribution: Aij “ ppzt`1 “ j |zt “ iq i P t1, ...,Ku. The probability of
moving from hidden state i to hidden state j ; A P RKˆK .

3 Emission probability: ppxt “ j |zt “ iq. The probability of an observed random variable
xt given the state of the hidden variable that "emitted" it.
(Often think about xt as discrete but all that follows also works in the continuous case)
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HMMs: Objectives

We consider the following objectives:

1 Compute the probability of a latent sequence given an observation sequence.
That is, we want to be able to compute ppz1:t |x1:tq. This is achieved with the
Forward-Backward algorithm.

2 Infer the most likely sequence of hidden states.
That is, we want to be able to compute

z˚ “ argmax
z1:T

ppz1:T |x1:T q.

This is achieved using the Viterbi algorithm.
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Example: Part-of-Speech Tagging
‚ Goal: Assign the correct grammatical tag (e.g., Noun, Verb) to each word in a sentence.
‚ Hidden States (zt): POS tags (e.g., DET, NOUN, VERB, ADJ).
‚ Observations (xt): The words in the sentence (e.g., "The", "cat", "sat").

DET NOUN VERB

"The" "cat" "sat"

ppz2|z1q ppz3|z2q

ppx1|z1q ppx2|z2q ppx3|z3q

‚ Transition: ppNOUN|DETq (Likelihood of Noun following Determinant).
‚ Emission: pp"cat"|NOUNq (Likelihood of "cat" being a Noun).
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Forward algorithm

‚ The goal is to recursively compute the filtered marginals,

αtpjq “ ppzt “ j |x1:tq.

‚ Assuming that we know the initial ppz1q, transition ppzt |zt´1q, and emission ppxt |ztq
probabilities for all 1 ď t ď T .

‚ This is a step in the forward-backward algorithm.
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Forward algorithm has two steps
‚ Prediction step: compute the one-step-ahead predictive density:

ppzt “ j |x1:pt´1qq “

K
ÿ

i“1

ppzt´1 “ i , zt “ j |x1:pt´1qq

“

K
ÿ

i“1

ppzt “ j |zt´1 “ i , x1:pt´1qqppzt´1 “ i |x1:pt´1qq

“

K
ÿ

i“1

ppzt “ j |zt´1 “ iqppzt´1 “ i |x1:pt´1qq “

K
ÿ

i“1

Aijαt´1piq “ pA
Jαt´1qj

‚ Update step: Denoting λtpjq “ ppxt |zt “ jq (here xt is fixed and λt P RK )

αtpjq “ ppzt “ j |x1:tq “ ppzt “ j |x1:pt´1q, xtq9 ppzt “ j , xt |x1:pt´1qq

“ ppxt |zt “ j , x1:pt´1qqppzt “ j |x1:pt´1qq

“ ppxt |zt “ jqppzt “ j |x1:pt´1qq “ λtpjqppzt “ j |x1:pt´1qq

Using matrix notation: αt 9λt d pA
Jαt´1q [d is the Hadamard (entrywise) product]

11 / 38



Forward-Backward algorithm

This task of hidden state inference breaks down into the following:
‚ Filtering: compute posterior over current hidden state, ppzt |x1:tq.
‚ Prediction: compute posterior over future hidden state, ppzt`k |x1:tq.
‚ Smoothing: compute posterior over past hidden state, ppzt |x1:T q 1 ď t ă T .

The probability of interest, ppzt |x1:T q is computed using a forward and backward recursion
‚ Forward Recursion: αtpjq “ ppzt “ j |x1:tq [this was computed earlier]
‚ Backward Recursion: βtpjq :“ ppxpt`1q:T |zt “ jq

We assume that we know the initial πpjq “ ppz1 “ jq, transition Aij “ ppzt “ j |zt´1 “ iq, and
emission λtpjq “ ppxt |zt “ jq probabilities for all t.
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Forward-Backward algorithm

We can break the chain into two parts, the past and the future, by conditioning on zt :
‚ We have

γt :“ ppzt |x1:T q 9 ppzt , x1:T q “ ppzt , x1:t , xpt`1q:T q

“ ppzt , x1:tqppxpt`1q:T |zt , x1:tq “ ppzt , x1:tqppxpt`1q:T |ztq

9 ppzt |x1:tqppxpt`1q:T |ztq

“ pForward RecursionqpBackward Recursionq

‚ Here we use the conditional independence xpt`1q:T K x1:t |zt .
‚ We know how to perform forward recursion from the previous part.
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Backward recursion

In the backward pass,

βtpiq “ ppxpt`1q:T |zt “ iq “
K
ÿ

j“1
ppzt`1 “ j , xt`1, xpt`2q:T |zt “ iq

“
ÿ

j

ppxpt`2q:T |zt`1 “ j , xt`1, zt “ iqppxt`1|zt`1 “ j , zt “ iqppzt`1 “ j |zt “ iq

“
ÿ

j

ppxpt`2q:T |zt`1 “ jqppxt`1|zt`1 “ jqppzt`1 “ j |zt “ iq

“
ÿ

j

βt`1pjqλt`1pjqAij

In vector notation βt “ Apλt`1 d βt`1q , where βT piq “ 1.

Forward-backward algorithm rγtpjq “ ppzt “ j |x1:T qs

Once we have the forward and the backward steps complete, we can compute γt 9αt d βt .
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Viterbi algorithm

‚ The Viterbi algorithm (Viterbi 1967) is used to compute the most probable sequence.

ẑ “ argmax
z1:T

ppz1:T |x1:T q

‚ Since this is MAP inference, we might think of replacing sum-operators with
max-operators, just like we did in sum-product and max-product.

‚ Viterbi algorithm is a specialized version of max-product: the forward pass uses
max-product, and the backward pass uses a traceback procedure to recover the most
probable path.
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Viterbi algorithm
‚ Define δt via

δtpjq “ max
z1,...,zt´1

ppz1:pt´1q, zt “ j , x1:tq

which is the probability of ending up in state j at time t, by taking the most probable
path.

‚ We notice that

δtpjq “ max
z1,...,zt´1

ppz1:pt´1q, zt “ j , x1:pt´1q, xtq

“ max
z1,...,zt´1

ppz1:pt´1q, x1:pt´1qqppzt “ j |zt´1qppxt |zt “ jq

“ max
i

max
z1,...,zt´2

ppz1:pt´2q, zt´1 “ i , x1:pt´1qqppzt “ j |zt´1 “ iqppxt |zt “ jq

“ max
i
δt´1piqAijλtpjq

‚ Keep track of the most likely previous state: θtpjq “ argmaxi δt´1piqAijλtpjq .
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Viterbi algorithm

‚ Initialize the algorithm with

δ1pjq “ ppz1 “ j , x1q “ πjλ1pjq.

‚ and terminate with
z˚T “ arg max

i
δT piq

‚ Then, we compute the most probable sequence of states using traceback:

z˚t “ θt`1pz
˚
t`1q
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Summary: HMMs

‚ HMMs hide the temporal dependence by keeping it in the unobserved state.

‚ No assumptions on the temporal dependence of observations is made.

‚ Forward-backward algorithm can be used to find "beliefs".

‚ Viterbi algorithm can be used to do MAP.
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Monte-Carlo Methods
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Sampling

‚ A sample from a distribution ppxq is a single realization x whose probability distribution is
ppxq. Here, x can be high-dimensional.

‚ Assumption: The density from which we sample, ppxq, can be evaluated to within a
multiplicative constant. That is, we have p̃pxq such that

ppxq “
p̃pxq

Z
.
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Warm up: Ancestral Sampling

‚ Given a DAGM, and the ability to sample from each of its factors given its parents, we can
sample from the joint distribution over all the nodes by ancestral sampling.

‚ Start with nodes that have no parents. Sample them from the corresponding marginal
distributions.

‚ At each step, sample from any conditional distribution that you haven’t visited yet, whose
parents have all been sampled.
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Ancestral Sampling: example

1

2 3

4 5

‚ The distribution graph factorizes according to the DAG

ppx1, . . . , x5q “

5
ź

i

ppxi |parentspxi qq

“ ppx1qppx2|x1qppx3|x1qppx4|x2, x3qppx5|x3q

‚ Start by sampling from ppx1q.
‚ Then sample from ppx2|x1q and ppx3|x1q.
‚ Then sample from ppx4|x2, x3q.
‚ Finally, sample from ppx5|x3q.
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Main objectives of sampling

Use Monte Carlo methods to solve one or both of the following problems.

‚ Problem 1: Generate samples txprquRr“1 from ppxq.
‚ Problem 2: To estimate expectations of functions, φpxq, under this distribution ppxq

Φ “ Ex„ppxqrφpxqs “

ż

φpxqppxqdx

The function φ is called a test function.
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Example

Examples of test functions φpxq:
‚ the mean of a function f pxq under ppxq by finding the expectation of the function
φ1pxq “ f pxq.

‚ the variance of f under ppxq by finding the expectations of the functions φ1pxq “ f pxq
and φ2pxq “ f pxq2

φ1pxq “ f pxq ñ Φ1 “ Ex„ppxqrφ1pxqs

φ2pxq “ f pxq2 ñ Φ2 “ Ex„ppxqrφ2pxqs

ñ varpf pxqq “ Φ2 ´ pΦ1q
2
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Estimation problem

We start with the estimation problem using simple Monte Carlo:
‚ Simple Monte Carlo: Given txprquRr“1 „ ppxq we can estimate the expectation
Ex„ppxqrφpxqs using the estimator Φ̂:

Φ :“ Ex„ppxqrφpxqs «
1
R

R
ÿ

r“1

φpxprqq :“ Φ̂

‚ The fact that Φ̂ is a consistent estimator of Φ follows from the Law of Large Numbers
(LLN).
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Basic properties of Monte Carlo estimation

‚ Unbiasedness: If the vectors txprquRr“1 are all generated (independently or not) from
ppxq, then the expectation of Φ̂ is Φ. Indeed,

ErΦ̂s “ E

«

1
R

R
ÿ

r“1

φpxprqq

ff

“
1
R

R
ÿ

r“1

Erφpxprqqs

“
1
R

R
ÿ

r“1

Ex„ppxqrφpxqs “
R

R
Ex„ppxqrφpxqs

“ Φ
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Simple properties of Monte Carlo estimation

‚ Variance: As the number of samples of R increases, the variance of Φ̂ will decrease with
rate 1

R if the samples are independent

varrΦ̂s “ var

«

1
R

R
ÿ

r“1

φpxprqq

ff

“
1
R2 var

«

R
ÿ

r“1

φpxprqq

ff

“
1
R2

R
ÿ

r“1

var
”

φpxprqq
ı

“
R

R2 varrφpxqs “
1
R
varrφpxqs

Accuracy of the Monte Carlo estimate depends on R and on the variance of φ.
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Normalizing constant

‚ Assume we know the density ppxq up to a multiplicative constant

ppxq “
p̃pxq

Z

‚ There are two difficulties:
‚ We do not generally know the normalizing constant, Z . Computing

Z “

ż

p̃pxqdx

requires a high-dimensional integral or sum.
‚ Even if we did know Z , the problem of drawing samples from ppxq is still a challenging one,

especially in high-dimensional spaces.
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Bad Idea: Lattice Discretization

Suppose we want to sample from ppxq for which p̃pxq is given in figure (a).

(a)

p̃pxq

(b)

ppxq

‚ How to compute Z?
‚ We could discretize the variable x and sample from the discrete distribution.
‚ In figure (b) there are 50 uniformly spaced points in one dimension. If our system had,
D “ 1000 dimensions say, then the corresponding number of points would be
50D “ 501000. Thus, the cost is exponential in dimension!
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Estimation tool: Importance Sampling
Importance sampling: to estimate the expectation of a function φpxq.

‚ The density from which we wish to draw samples can be evaluated up to normalizing
constant. As before, we have ppxq “ p̃pxq{Z .

‚ There is a simpler density, qpxq from which it is easy to sample from and easy to evaluate
up to normalizing constant (i.e. q̃pxq)

qpxq “
q̃pxq

Zq
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Estimation tool: Importance Sampling

‚ In importance sampling, we generate R samples from qpxq

txprquRr“1 „ qpxq

‚ If these points were samples from ppxq then we could estimate Φ by

Φ “ Ex„ppxqrφpxqs «
1
R

R
ÿ

r“1

φpxprqq “ Φ̂

That is, we could use a simple Monte Carlo estimator.
‚ But we sampled from q. We need to correct this!
‚ Values of x where qpxq is greater than ppxq will be over-represented in this estimator, and

points where qpxq is less than ppxq will be under-represented. Thus, we introduce weights.
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Estimation tool: Importance Sampling
‚ Introduce weights: w̃r “

p̃pxprqq
q̃pxprqq

“
Zpppx

prq
q

Zqqpxprqq
and notice that

1
R

R
ÿ

r“1

w̃r « Ex„qpxq

„

p̃pxq

q̃pxq



“
Zp

Zq

ż

ppxq

qpxq
qpxqdx “

Zp

Zq

‚ Finally, we rewrite our estimator under q

Φ “

ż

φpxqppxqdx “

ż

φpxq
ppxq

qpxq
qpxqdx «

1
R

R
ÿ

r“1

φpxprqq
ppxprqq

qpxprqq
“ p˚q

‚ However, the estimator relies on p. It can only rely on p̃ and q̃.

p˚q “
Zq

Zp

1
R

R
ÿ

r“1

φpxprqq ¨
p̃pxprqq

q̃pxprqq
“

Zq

Zp

1
R

R
ÿ

r“1

φpxprqq ¨ w̃r

«

1
R

řR
r“1 φpx

prqq ¨ w̃r

1
R

řR
r“1 w̃r

“

R
ÿ

r“1

φpxprqq ¨ wr “ Φ̂iw

where wr “
w̃r

řR
r“1 w̃r

and Φ̂iw is our importance weighted estimator.
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Rejection Sampling: Intuition
Key Intuition:
To sample uniformly from a complex domain D, we
can sample uniformly from a larger, simpler domain
C and keep only the realizations that fall within D.

Example: Unit Disk
‚ Target D: Unit disk
tpx , yq P R2 : x2 ` y2 ď 1u.

‚ Proposal C : Square r´1, 1s ˆ r´1, 1s.

Procedure:
1 Sample pU,V q „ Upr´1, 1s2q.
2 Accept if X 2 ` Y 2 ď 1 (Blue).
3 Reject otherwise (Gray).

Illustration of rejection sampling for the unit disk.
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Sampling tool: Rejection sampling

‚ We want expectations under ppxq “ p˚pxq
Zp

.

‚ Assume that we have a simpler proposal density qpxq which we can evaluate (within a
multiplicative factor Zq, as before), and from which we can generate samples, i.e.

q˚pxq “ Zq ¨ qpxq

‚ Further assume that we know the value of a constant c such that

@x , cq˚pxq ą p˚pxq
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Sampling tool: Rejection sampling

The procedure is as follows:
1 Generate two random numbers.

1 x is generated from qpxq.
2 u is generated uniformly from the interval r0, cq˚pxqs.

2 Accept or reject the sample x by comparing the value of u with p˚pxq

1 If u ą p˚pxq, then x is rejected.
2 Otherwise x is accepted; x is added to our set of samples txprqu.
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Why does rejection sampling work?
(i) x „ qpxq, (ii) u|x „ Unifr0, cq˚pxqs, (iii) accept x if u ď p˚pxq.

‚ Note: Ppu ď p˚pxq|xq “ p˚pxq
cq˚pxq (remember we assume p˚pxq ă cq˚pxq).

‚ @A Ď X : Px„ppx P Aq “
ş

A
ppxqdx “

ş

1txPAuppxqdx “ Ex„pr1txPAus.
‚ Law of total expectation ErErZ |Hss “ EZ

This gives:

Px„qpx P A|u ď p˚pxqq “
Px„qpx P A, u ď p˚pxqq

Ex„qrPpu ď p˚pxq|xqs

“ Ex„q

“

1txPAuPpu ď p˚pxq|xq
‰

{Ex„q

„

p˚pxq

cq˚pxq



“ Ex„q

„

1txPAu
p˚pxq

cq˚pxq



{
Zp

cZq
“ Px„ppx P Aq

Zp

cZq
{
Zp

cZq

“ Px„ppx P Aq.
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Rejection sampling in many dimensions

‚ In high-dimensional problems, the requirement that cq˚pxq ě p˚pxq will force c to be
huge, so acceptances will be very rare.

‚ Finding such a value of c may be difficult too, since we don’t know where the modes of
p˚ are located nor how high they are.

‚ In general c grows exponentially with the dimensionality, so the acceptance rate is
expected to be exponentially small in dimension

acceptance rate “
area under p˚

area under cp˚
“

Zp

cZq
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Summary

‚ Estimating expectations is an important problem, which is in general hard. We learned 3
sampling-based tools for this task:
‚ Simple Monte Carlo
‚ Importance Sampling
‚ Rejection Sampling

‚ Next lecture, we will learn more refined techniques.
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