
Lecture 3: Exact inference & Message Passing

Thibault Randrianarisoa

University of Toronto, Winter 2026

January 20, 2026

1 / 32

Table of contents

1 Exact inference: Variable Elimination
2 Message passing on trees

2 / 32

Exact Inference

3 / 32

Inference as Conditional Distribution
‚ We explore inference in probabilistic graphical models (PGMs):

‚ xE “ The observed evidence
‚ xF “ The unobserved variable we want to infer
‚ xR “ xztxF , xEu “ Remaining variables, extraneous to query

‚ For inference, focus on computing the conditional probability distribution:

ppxF |xE q “
ppxF , xE q

ppxE q
“

ppxF , xE q
ř

xF
ppxF , xE q

‚ for which, we marginalize out these extraneous variables, focusing on the joint distribution
over evidence and subject of inference:

ppxF , xE q “
ÿ

xR

ppxF , xE , xRq

4 / 32

Variable Elimination

Spoiler
Order in which we marginalize affects the computational cost!

Our main tool is variable elimination, which means marginalizing out one variable at a time:
‚ A simple and general exact inference algorithm in any probabilistic graphical model.
‚ Computational complexity depends on the graph structure.
‚ Dynamic programming avoids enumerating all variable assignments.

5 / 32

Example: Simple Chain

Lets start with the example of a simple chain:

A B C D

We want to compute ppDq with no evidence variables.

‚ Variables: xF “ tDu, xE “ tu, xR “ tA,B,Cu.
‚ Factorization: ppA,B,C ,Dq “ ppAqppB|AqppC |BqppD|C q.
‚ Assume each variable can take on k different values.

6 / 32

Example: Simple Chain

The goal is to compute the marginal ppDq “
ř

A,B,C ppA,B,C ,Dq for any possible value of D.

‚ Naive approach: Summing over all assignments has exponential cost Opkn“4q.

ppDq “
ÿ

A,B,C

ppA,B,C ,Dq

“
ÿ

C

ÿ

B

ÿ

A

ppAqppB|AqppC |BqppD|C q

‚ Variable Elimination: Choose an elimination ordering:

ppDq “
ÿ

C

ppD|C q

˜

ÿ

B

ppC |Bq

˜

ÿ

A

ppAqppB|Aq

¸¸

7 / 32

Example: Simple Chain

‚ This reduces the complexity by first computing terms that appear across the other sums.

ppDq “
ÿ

C

ppD|C q
ÿ

B

ppC |Bq
ÿ

A

ppAqppB|Aq

“
ÿ

C

ppD|C q
ÿ

B

ppC |BqppBq

“
ÿ

C

ppD|C qppC q

‚ e.g. for each value of B, we have to compute the sum
ř

A ppAqppB|Aq, which takes
k ¨ k “ k2 operations.

‚ The cost of performing inference on the chain in this manner is Opnk2q. In comparison,
generating the full joint distribution and marginalizing over it has complexity Opknq!.

8 / 32

Best Elimination Ordering

‚ The complexity of variable elimination depends heavily on the ordering!

‚ Unfortunately, finding the best elimination ordering is NP-hard.

‚ However, in chains and trees, the best elimination ordering is sometimes clear.

‚ Intuition:
‚ Marginalizing over nodes with no children can be done first.
‚ Start with nodes that come early in the induced ordering of the DAG.

9 / 32

Intermediate Factors

X

A

B

C

‚ In general, eliminating does not produce a valid marginal or
conditional distribution of the graphical model.

‚ In the example on the left, the distribution is given by:

ppX ,A,B,C q “ ppX qppA|X qppB|AqppC |B,X q

Marginalizing over X gives

ppA,B,C q “
ÿ

X

ppX qppA|X qppB|AqppC |B,X q

“ ppB|Aq
ÿ

X

ppX qppA|X qppC |B,X q

‚ The resulting term
ř

X ppX qppA|X qppC |B,X q does not
correspond to a valid conditional or marginal distribution
because it is unnormalized.

10 / 32

Intermediate Factors

‚ We introduce factors φ which are not necessarily normalized distributions, but which
describe the local relationship between random variables.

‚ In the above example:

ppA,B,C q “
ÿ

X

ppX qppA|X qppB|AqppC |B,X q

“
ÿ

X

φ1pX qφ2pA,X qφ3pA,Bqφ4pX ,B,C q

“ φ3pA,Bq
ÿ

X

φ1pX qφ2pA,X qφ4pX ,B,C q

“ φ3pA,BqτpA,B,C q

‚ Marginalizing over X we introduce a new factor, denoted by τ .

11 / 32

Sum-Product Inference

Abstractly, computing ppxF |xE q is given by the sum-product algorithm:

ppxF |xE q9 τpxF , xE q “
ÿ

xR

ź

CPF
φC pxC q

‚ For DAGs: F is given by sets of the form tiu Y parentspiq.

12 / 32

Example

Coherence

Difficulty

Intelligence

SAT

Grade

Letter

Job

Happy

‚ This describes a factorization:

ppC ,D, I ,G , S , L,H, Jq “

ppCqppD|CqppI q

ˆ ppG |D, I qppL|GqppS |I q

ˆ ppJ|S , LqppH|J,Gq

For notational convenience, we write the conditionals as factors.

Φ “ tφpCq, φpC ,Dq, φpI q, φpG ,D, I q, φpL,Gq, φpS , I q, φpJ, S , Lq, φpH, J,Gqu

If we are interested in inferring the marginal probability of getting a job, PpJq we can do exact
inference on the joint distribution by marginalizing according to a specific variable elimination ordering.

13 / 32

Example
Elimination Ordering ă tC ,D, I ,H,G , S , Lu

ppJq “
ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

G

φpL, Gq
ÿ

H

φpH, G, Jq
ÿ

I

φpS, IqφpIq
ÿ

D

φpG, D, Iq
ÿ

C

φpCqφpC, Dq

looooooooooomooooooooooon

τpDq

“
ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

G

φpL, Gq
ÿ

H

φpH, G, Jq
ÿ

I

φpS, IqφpIq
ÿ

D

φpG, D, IqτpDq

looooooooooooomooooooooooooon

τpG,Iq

“
ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

G

φpL, Gq
ÿ

H

φpH, G, Jq
ÿ

I

φpS, IqφpIqτpG, Iq

loooooooooooooooomoooooooooooooooon

τpS,Gq

“
ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

G

φpL, GqτpS, Gq
ÿ

H

φpH, G, Jq

looooooooomooooooooon

τpG,Jq

“
ÿ

L

ÿ

S

φpJ, L, Sq
ÿ

G

φpL, GqτpS, GqτpG, Jq

loooooooooooooooooooomoooooooooooooooooooon

τpJ,L,Sq

“
ÿ

L

ÿ

S

φpJ, L, SqτpJ, L, Sq

looooooooooooooooomooooooooooooooooon

τpJ,Lq

“
ÿ

L

τpJ, Lq

loooooomoooooon

τpJq

“ τpJq 14 / 32

Complexity of Variable Elimination Ordering

Complexity is determined by the number of variables inside each sum:

Opm ¨ kNmax q

‚ m: Number of initial factors.
‚ k : Number of states each random variable takes (assumed to be equal here).
‚ Ni : Number of random variables inside each sum

ř

i .
‚ Nmax “ maxi Ni : The number of variables inside the largest sum.

As discussed previously, variable elimination ordering determines the computational complexity.

15 / 32

Example
Elimination Ordering ă tC ,D, I ,H,G ,S , Lu
‚ Here are all the initial factors:

F “ tφpCq, φpC ,Dq, φpI q, φpG ,D, I q, φpL,Gq, φpS, I q, φpJ,S , Lq, φpH, J,Gqu
ùñ m “ |F | “ 8

‚ Here are the sums, and the number of variables that appear in them
ÿ

C

φpCqφpC ,Dq

looooooooomooooooooon

NC“2

ÿ

D

φpG ,D, I qτpDq

looooooooooomooooooooooon

ND“3

ÿ

I

φpS, I qφpI qτpG , I q

looooooooooooomooooooooooooon

NI“3
ÿ

H

φpH,G , Jq

looooooomooooooon

NH“3

ÿ

G

φpL,GqτpS ,GqτpG , Jq

loooooooooooooooomoooooooooooooooon

NG“4

ÿ

S

φpJ, L, SqτpJ, L, Sq

looooooooooooomooooooooooooon

NS“3
ÿ

L

τpJ, Lq

loooomoooon

NL“2

ùñ the largest sum is NG “ 4.

‚ For simplicity, assume all variables take on k states. So the complexity of the variable
elimination under this ordering is Op8 ˚ k4q.

16 / 32

Summary

Variable elimination:
‚ Used for exact inference in PGMs.
‚ Ordering can significantly reduce computational complexity.
‚ Overall complexity is Opm ¨ kNmax q and can be computed once an ordering is chosen.

17 / 32

Message passing

18 / 32

Variable Elimination Order and Trees

‚ First part: we can do exact inference by variable elimination: i.e. to compute ppA|C q, we
can marginalize ppA,B|C q over every variable in B, one at a time.

‚ Computational cost is determined by the graph structure, and the elimination ordering.
‚ Determining the optimal elimination ordering is hard.
‚ Even if we do, the resulting marginalization might also be unreasonably costly.
‚ Fortunately, for trees, any elimination ordering that goes from the leaves inwards towards

any root will be optimal.
‚ You can think of trees as just chains which sometimes branch.

19 / 32

Directed Trees as Undirected Models

‚ A directed tree is a DAG where every node has at most one parent.
‚ We can actually ignore the arrows and treat it as an undirected tree.

21

4 3

(a) Undirected

21

4 3

(b) Directed (Root 1)

21

4 3

(c) Directed (Root 2)

21

4 3

20 / 32

Joint Distribution Parameterization

‚ Consider the factorization for graph (b) (Root at 1):

p˚pzq9 p˚pz1qp
˚pz2|z1qp

˚pz3|z2qp
˚pz4|z2q

‚ We can rewrite this solely in terms of marginals (nodes) and pairwise joints (edges):

p˚pzq “ p˚pz1q
p˚pz1, z2q

p˚pz1q

p˚pz2, z3q

p˚pz2q

p˚pz2, z4q

p˚pz2q

“ p˚pz1qp
˚pz2qp

˚pz3qp
˚pz4q

p˚pz1, z2q

p˚pz1qp˚pz2q

p˚pz2, z3q

p˚pz2qp˚pz3q

p˚pz2, z4q

p˚pz2qp˚pz4q

‚ Notice the direction of the arrows has disappeared! This depends only on the cliques
(edges) and nodes.

‚ We obtain the same with graph (c)

21 / 32

Symmetric Factorization for Trees

‚ We can generalize this result. For any tree structure, the joint distribution can be written
as a product of local marginals divided by "separators" (node marginals).

Tree Factorization with Potentials

p˚pzq9
ź

sPV
p˚pzsq

ź

ps,tqPE

p˚pzs , ztq

p˚pzsqp˚pztq
“

ź

sPV
p˚pzsq

ź

ps,tqPE

ψstpzs , ztq

‚ This form treats every edge ps, tq as a symmetric potential:

ψstpzs , ztq “
p˚pzs , ztq

p˚pzsqp˚pztq

‚ This confirms that for trees, the directed and undirected views are equivalent.

22 / 32

Message Passing (Belief Propagation)

‚ Problem: Variable Elimination finds ppxF |xE q for a specific (set of) query node xF .

‚ If we want the marginals for every node in the graph, running VE multiple times is
inefficient.

‚ Solution: Message Passing (Sum-Product Algorithm on tree).

‚ We view the graph edges as communication channels, sharing information.

23 / 32

Example: Inference in Trees

x1

x2 x3

x4 x5

‚ The joint distribution is
ppxq “ 1

Z

ś

iPV ψi pxi q
ś

pi,jqPE ψijpxi , xjq.
‚ Want to compute ppx3|xE q,

xE “ px̄2, x̄4, x̄5q, xR “ x1

‚ We have ppx3|xE q9 ppx3, xE q

(meaning that ppx3|xE q “
ppx3,xE q

ř

x13
ppx 13,xE q

and

ZE “
ř

x 13
ppx 13, xE q)

ppx3|xE q “
1
ZE

ÿ

x1

ψ1px1qψ2px̄2qψ3px3qψ4px̄4qψ5px̄5qψ12px1, x̄2qψ13px1, x3qψ34px3, x̄4qψ35px3, x̄5q

We write the variable elimination algorithm revealing additional structure.

24 / 32

Example: Inference in Trees
x1

x2 x3

x4 x5

m21px1q

m43px3q m53px3q

m13px3q

ppx3|xE q “
1
ZE

ÿ

x1

ψ1px1qψ2px̄2qψ3px3qψ4px̄4qψ5px̄5qψ12px1, x̄2qψ13px1, x3qψ34px3, x̄4qψ35px3, x̄5q

“
1
ZE

ψ4px̄4qψ34px3, x̄4q
loooooooooomoooooooooon

m43px3q

ψ5px̄5qψ35px3, x̄5q
loooooooooomoooooooooon

m53px3q

ψ3px3q
ÿ

x1

ψ1px1qψ13px1, x3qψ2px̄2qψ12px1, x̄2q
loooooooooomoooooooooon

m21px1q

“
1
ZE

m43px3qm53px3qψ3px3q
ÿ

x1

ψ1px1qψ13px1, x3qm21px1q

loooooooooooooooooomoooooooooooooooooon

m13px3q

“
1
ZE

ψ3px3qm43px3qm53px3qm13px3q “
ψ3px3qm43px3qm53px3qm13px3q

ř

x13
ψ3px 13qm43px 13qm53px 13qm13px 13q

25 / 32

What is a "Message"?

‚ A message miÑjpxjq is a factor sent from node i to neighbor j .
‚ Intuition: It summarizes the entire branch of the graph "behind" node i , so node j

doesn’t need to look there.
‚ It is exactly the intermediate factor τ from Variable Elimination!

jiRest of Graph
miÑj

26 / 32

Message Passing on Trees
We perform variable elimination from leaves to root, which is the sum product algorithm to
compute all marginals. Belief propagation is a message-passing between neighboring vertices of
the graph.
‚ The message sent from variable j to i P Npjq is

mjÑi pxi q “
ÿ

xj

ψjpxjqψijpxi , xjq
ź

kPNpjqzi

mkÑjpxjq

‚ If xj is observed, the message is

mjÑi pxi q “ ψjpx̄jqψijpxi , x̄jq
ź

kPNpjqzi

mkÑjpx̄jq

‚ Once the message passing stage is complete, we can compute our beliefs as

bpxi q9ψi pxi q
ź

jPNpiq

mjÑi pxi q.

‚ Once normalized, beliefs are the marginals we want to compute!
27 / 32

Belief Propagation on Trees
Belief Propagation Algorithm on Trees

Step 1 Choose root r arbitrarily
Step 2 Pass messages from leafs to r

Step 3 Pass messages from r to leafs

+

These two passes are sufficient on trees!
@pi , jq compute miÑjpxjq and mjÑi pxi q.

Step 4 Compute beliefs (marginals)

@i , bpxi q “ ppxi |xE q9ψi pxi q
ź

jPNpiq

mjÑi pxi q

One can compute them in two steps:
‚ Compute unnormalized beliefs b̃pxi q “ ψi pxi q

ś

jPNpiqmjÑi pxi q

‚ Normalize them bpxi q “ b̃pxi q{
ř

x 1i
b̃px 1i q.

28 / 32

Tree constraint

‚ Exact Message Passing works simply on graphs without loops (Singly Connected).
‚ Between any two nodes, there is exactly one path.

1

2 3
Tree: OK

1

2 3
Loop: Hard

29 / 32

Inference in Trees: Compute ppx3|x̄2, x̄4, x̄5q and
ppx1|x̄2, x̄4, x̄5q1. Collect (Leaves Ñ Root)

x1

x2 x3

x4 x5

m21

m43 m53

m31

2. Distribute (Root Ñ Leaves)

x1

x2 x3

x4 x5

m13

mjÑi pxi q “
ÿ

xj

ψj pxj qψij pxi , xj q
ź

kPNpjqzi

mkÑj pxj q

bpxi q9ψi pxi q
ź

jPNpiq

mjÑi pxi q.

‚ m5Ñ3px3q “ ψ5px̄5qψ35px3, x̄5q

‚ m2Ñ1px1q “ ψ2px̄2qψ12px1, x̄2q x2, x4, x5 are observed

‚ m4Ñ3px3q “ ψ4px̄4qψ34px3, x̄4q

‚ m3Ñ1px1q “
ř

x3
ψ3px3qψ13px1, x3qm4Ñ3px3qm5Ñ3px3q

‚ m1Ñ3px3q “
ř

x1
ψ1px1qψ13px1, x3qm2Ñ1px1q

‚ bpx1q9ψ1px1qm2Ñ1px1qm3Ñ1px1q

‚ bpx3q9ψ3px3qm1Ñ3px3qm4Ñ3px3qm5Ñ3px3q

30 / 32

Max-product algorithm
‚ MAP inference: Suppose that instead of marginalizing out xR we are interested in the

most likely configuration x̂ “ arg max ppx |xE q.

‚ For MAP inference, we maximize over xj instead of summing over them. This is called
max-product BP with updates

mjÑi pxi q “ max
xj

ψjpxjqψijpxi , xjq
ź

kPNpjqzi

mkÑjpxjq

‚ The beliefs are max-marginals

b̂pxi q “ max
xzi

ppxi , xzi |xE q9ψi pxi q
ź

jPNpiq

mjÑi pxi q.

‚ MAP inference: take x̂i :“ arg maxxi b̂pxi q for all i R E .
31 / 32

Summary: Message Passing vs VE

Variable Elimination
‚ Single Query.
‚ One-way flow.
‚ Discards intermediates.

Message Passing
‚ All-Nodes Query.
‚ Two-way flow (Collect/Distribute).
‚ Caches intermediates (messages).

The algorithm we learned is called sum-product BP. If we are interested in MAP inference, we
can maximize over xj instead of summing over them. This is called max-product BP.

32 / 32

	Exact Inference

