Lecture 3: Exact inference & Message Passing

Thibault Randrianarisoa

University of Toronto, Winter 2026

January 20, 2026

@
3 Statistical Sciences
8 UNIVERSITY OF TORONTO

1/32

Table of contents

® Exact inference: Variable Elimination

® Message passing on trees

2/32

Exact Inference

Inference as Conditional Distribution

* We explore inference in probabilistic graphical models (PGMs):

® xg = The observed evidence
® xg = The unobserved variable we want to infer
* xgr = x\{xr, xe} = Remaining variables, extraneous to query

¢ For inference, focus on computing the conditional probability distribution:

p(XF7XE) _ P(XF,XE)
p(xE) D P(XE, XE)

p(xelxe) =
e for which, we marginalize out these extraneous variables, focusing on the joint distribution

over evidence and subject of inference:

P(XF, XE) = Z P(XF7 XE, XR)

XR

4/32

Variable Elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination, which means marginalizing out one variable at a time:
® A simple and general exact inference algorithm in any probabilistic graphical model.
e Computational complexity depends on the graph structure.

e Dynamic programming avoids enumerating all variable assignments.

5/32

Example: Simple Chain

Lets start with the example of a simple chain:

O—(—(O—)

We want to compute p(D) with no evidence variables.
® Variables: x¢ = {D}, xg = {}, xg = {A, B, C}.

® Factorization: p(A, B, C,D) = p(A)p(B|A)p(C|B)p(D|C).
e Assume each variable can take on k different values.

6/32

Example: Simple Chain

The goal is to compute the marginal p(D) = ZAB’C p(A, B, C, D) for any possible value of D.

* Naive approach: Summing over all assignments has exponential cost O(k"~*%).

p(D) = >} p(A,B,C,D)
A,B,C

333 p(Ap(BIA)R(CIB)p(DIC)

C B A

® Variable Elimination: Choose an elimination ordering:

Zp D|C) (Zp C|B) <Zp B|A>>

7/32

Example: Simple Chain

e This reduces the complexity by first computing terms that appear across the other sums.

Zp D|C) Zp C|B) Zp p(B|A)
=Zp D|C) Zp C|B)p(B

C B
= 2.,p(D|C)p(C)

C

* e.g. for each value of B, we have to compute the sum }}, p(A)p(B|A), which takes
k - k = k? operations.

® The cost of performing inference on the chain in this manner is O(nk?). In comparison,
generating the full joint distribution and marginalizing over it has complexity O(k")!.

8/32

Best Elimination Ordering

The complexity of variable elimination depends heavily on the ordering!
Unfortunately, finding the best elimination ordering is NP-hard.
However, in chains and trees, the best elimination ordering is sometimes clear.

Intuition:

® Marginalizing over nodes with no children can be done first.
® Start with nodes that come early in the induced ordering of the DAG.

9/32

Intermediate Factors

® In general, eliminating does not produce a valid marginal or
X conditional distribution of the graphical model.

® |n the example on the left, the distribution is given by:
p(X,A, B, C) = p(X)p(A|X)p(B|A)p(C|B, X)
Marginalizing over X gives

p(A, B, C) Zp p(A|X)p(B|A)p(C|B, X)

— p(B|A) Zp p(AIX)p(C|B, X)

® The resulting term >3, p(X)p(A|X)p(C|B, X) does not
correspond to a valid conditional or marginal distribution
because it is unnormalized.

10/32

Intermediate Factors

® We introduce factors ¢ which are not necessarily normalized distributions, but which
describe the local relationship between random variables.

® |n the above example:

p(A, B, C) Zp p(A|X)p(B|A)p(C|B, X)
—2¢1)62(A, X)d3(A, B)¢a(X, B, C)
= ¢3(A, B) 26251)p2(A, X)pa(X, B, C)

= ¢3(A, B)T(A,B7 C)

® Marginalizing over X we introduce a new factor, denoted by 7.

11/32

Sum-Product Inference

Abstractly, computing p(xg|xg) is given by the sum-product algorithm:

p(x|xe) ocr(xp, xe) = D [| dclxc)

xgr CeF

® For DAGs: F is given by sets of the form {i} U parents(/).

12/32

Example

Coherence Intelligence

e This describes a factorization:
p(C,D,1,G,S,L,H,J) =
p(C)p(D[C)p(1)
% p(GID, 1)p(LIG)p(SII)
% p(JIS, L)p(H|J, G)

For notational convenience, we write the conditionals as factors.
& = {¢(C),¢(C, D), ¢(1),#(G, D, 1), ¢(L, G), (S, 1), (4, S, L), ¢(H, J, G)}
If we are interested in inferring the marginal probability of getting a job, P(J) we can do exact

inference on the joint distribution by marginalizing according to a specific variable elimination ordering.

13/32

Example
Elimination Ordering < {C,D,I,H,G,S, L}

p(J) = X3 (L, S) D d(L, G) Y b(H, G,) 3 ¢(S, Nb(1) Y, 6(G, D, 1) Y] $(C)e(C, D)
LS G H 1 D C

(D)

=2 ¢ L S) D AL, G) Y B(H, G,) Y ¢(S, (1) Y, ¢(G, D,)7(D)

LS G H 1 D

T(G,I)

=22, LS Y 6L, G) Y d(H, G, 1) Y ¢(S, Ne(I)T (G, 1)

LS G H !

7(5,G)
=YY 60, L, S>Z¢(L, G)T(S,G) Y, #(H, G, J)
LS H
7(G,J)
=Y Y60 L, 5>Z¢<L 6)7(S,6)7(G, J)
LS
T(J,L,5)

=226, L,S)T(J, L, S)
LS

T(J;L)

=7() 14 /32

Complexity of Variable Elimination Ordering

Complexity is determined by the number of variables inside each sum:

O(m - KMoav)

m: Number of initial factors.

k: Number of states each random variable takes (assumed to be equal here).

N;: Number of random variables inside each sum }..

® N,.x = max; N;: The number of variables inside the largest sum.

As discussed previously, variable elimination ordering determines the computational complexity.

15/32

Example
Elimination Ordering < {C,D,/,H,G,S, L}
® Here are aII the initial factors:
= {#(C),¢(C, D), 8(1),¢(G, D, 1), (L, G), ¢(S, 1), ¢(J, S, L), ¢(H, J, G)}

= m=|F|=38

® Here are the sums, and the number of variables that appear in them

D18(C)é(C, Zzz)GDIT(D Zq&SI (G, 1)
C
Ne=2 Np=3 N;=3
D 6(H, G,) D 6(L,G)T(S,G)r(G,J) Y (4, L,S)7(J,L,S)
H G S
Ny=3 Ng=4 Ns=3

ZT(J, L) = the largest sum is Ng = 4.
L

—
Ny =2
® For simplicity, assume all variables take on k states. So the complexity of the variable

elimination under this ordering is O(8 = k*).
16 /32

Summary

Variable elimination:
e Used for exact inference in PGMs.
¢ Ordering can significantly reduce computational complexity.
* Overall complexity is O(m - kMm) and can be computed once an ordering is chosen.

17 /32

Message passing

Variable Elimination Order and Trees

First part: we can do exact inference by variable elimination: i.e. to compute p(A|C), we
can marginalize p(A, B|C) over every variable in B, one at a time.

Computational cost is determined by the graph structure, and the elimination ordering.
Determining the optimal elimination ordering is hard.
Even if we do, the resulting marginalization might also be unreasonably costly.

Fortunately, for trees, any elimination ordering that goes from the leaves inwards towards
any root will be optimal.

You can think of trees as just chains which sometimes branch.

19/32

Directed Trees as Undirected Models

* A directed tree is a DAG where every node has at most one parent.

® We can actually ignore the arrows and treat it as an undirected tree.

GGGQ %p\@@—ﬁ\

(a) Undirected) Directed (Root 1)) Directed (Root 2)

20/ 32

Joint Distribution Parameterization

* Consider the factorization for graph (b) (Root at 1):
p*(2) o p*(21)p* (22|21) p* (23] 22) P (23] 22)
® We can rewrite this solely in terms of marginals (nodes) and pairwise joints (edges):

p*(z1,22) p* (22, 23) p* (22, 74)
p¥(z1) p*(z) p*(22)
P (z1,22) p*(z2,23) p*(z2,2)
p*(z1)p*(22) p*(22)p*(23) P*(22) p*(2a)

p*(z) = p*(21)

= p*(z1)p*(22)p*(z3)p* (za)

* Notice the direction of the arrows has disappeared! This depends only on the cliques
(edges) and nodes.

® We obtain the same with graph (c)

21/32

Symmetric Factorization for Trees

® We can generalize this result. For any tree structure, the joint distribution can be written

as a product of local marginals divided by "separators" (node marginals).

Tree Factorization with Potentials

"R [[p)][] p*(Zs’Zt =[1r @)]] va(z2)

seV (s,t)EE seV (s,t)e€

® This form treats every edge (s, t) as a symmetric potential:

p*(zs,)

Vst(2s, 2¢) = p*(z5)p*(2¢)

e This confirms that for trees, the directed and undirected views are equivalent.

22/32

Message Passing (Belief Propagation)

Problem: Variable Elimination finds p(xg|xg) for a specific (set of) query node xg.

If we want the marginals for every node in the graph, running VE multiple times is
inefficient.

Solution: Message Passing (Sum-Product Algorithm on tree).

We view the graph edges as communication channels, sharing information.

23/32

Example: Inference in Trees

® The joint distribution is
6 p(x) = £ Tiey i) TT(1pee Vi (xi:%).

® Want to compute p(x3|xg),

° ° xg = (X2, %X4,%5), Xr =X1

® We have p(x3|xg) oc p(x3, Xg)
° ° (meaning that p(x3|xg) = % and
ZE = %), plxt xe))

p(xs|xg) = % D1 0a)¥2(R2) 13 (x3)tba (Ra)15 (%5)12 (x1, %2) Y13 (X1, X3) 134 (X3, a)35 (x3, X5)

We write the variable elimination algorithm revealing additional structure.

24/32

Example: Inference in Trees

ma3(xs)

plxslxe) = —¢ Z% x1)¥2(R2) 13 (x3)va (Xa) s (%5)12 (x1, X2) 113 (x1, x3)¥34 (X3, %4) 135 (x3, X5)

= % Va(%a)3a(x3, %) 15 (%6)35 (x3, %6) 13 (x3) D | ¥1(x1) 113 (xa1, x3) P2 (%2) 12 (1, %)

ma3(x3) ms3(x3) Xl m21(x1)

ma3 (x3) ms3 (x3)1h3(x3) Y 1 (x1)t13(x1, x3) Moz (x1)

ZE

my3(x3)

L e man () e () e () 3 (X38) M43 (x3) ms3 (x3) m13(x3)
ze V3La)mas(a)mss(s)miss) 2 ¥3(x5) maz (x5) ms3 (x3) m13 (>5)

25 /32

What is a "Message"?

A message mj_,j(x;) is a factor sent from node i to neighbor j.

Intuition: It summarizes the entire branch of the graph "behind" node i, so node j
doesn't need to look there.

It is exactly the intermediate factor 7 from Variable Elimination!

I/ - \1 ml—>_]
» Rest of Graph ¢ r——
< -

T

26 /32

Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum product algorithm to
compute all marginals. Belief propagation is a message-passing between neighboring vertices of

the graph.
® The message sent from variable j to i € N(j) is

m_j—)l XI ij Xj wlj XI7XJ H my_; XJ
Xj keN()\i

® If x; is observed, the message is

mji(6) = (%)Y 06, %)] mee(%
keN(H\i

® Once the message passing stage is complete, we can compute our beliefs as

b(X,')OCiﬁ,‘(X;) 1_[mjﬁ;(X,').

JeN(i)

¢ Once normalized, beliefs are the marginals we want to compute!

27 /32

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Step 1 Choose root r arbitrarily

These two passes are sufficient on trees!

V(i,j) compute m;_,;(x;) and m;j_;(x;).

Step 2 Pass messages from leafs to r
Step 3 Pass messages from r to leafs

Step 4 Compute beliefs (marginals)
Vi, b(xi) = p(xilxe) ci(xi)] mjmi(x)
JeN()
One can compute them in two steps:
e Compute unnormalized beliefs b(x;) = 1;(x;) [Lienciy mi—i(x)

j
* Normalize them b(x;) = b(x;)/ Y, b(x}).

28 /32

Tree constraint

® Exact Message Passing works simply on graphs without loops (Singly Connected).
® Between any two nodes, there is exactly one path.

Tree: OK Loop: Hard

»
|

20/32

Inference in Trees: Compute p(x3|Xo, X4, X5) and

1. Collect (Leaves — Root)

2. Distribute (Root — Leaves)

113

* mi_3(x3)

p(Xl‘)_Q?)_(47)_(5)

miLi(a) = 2 i0)i0a) [misitq)

5 KNG\
b(xi)octhi(xi) [mj—i(x).
JEN()
ms_,3(x3) = 15(X5)35(x3, X5)
ma-1(x1) = ¥2(X2)Y12(x1, X2) X2, Xa, X5 are observed
my,3(x3) = Ya(Xa)p3a(x3, Xa)
m3_1(x1) =

Yy Y3 (x3)¥13(x1, X3)Ma—3(x3) M5 3(x3)
Dl Y10) Y1301, x3)m21(x1)

b(Xl) oC ¢1 (X1
b(X3) oC w3(X3

Yma_1(x1)m3—1(x1)
)

m1-3(x3)Ma—3(x3)ms_3(x3)

30/32

Max-product algorithm

MAP inference: Suppose that instead of marginalizing out xg we are interested in the
most likely configuration & = arg max p(x|xg).

For MAP inference, we maximize over x; instead of summing over them. This is called
max-product BP with updates

mji(xi) = maxd)](xj Vi (X, X)) H mkﬂJ (%)
keN(j)\

The beliefs are max-marginals

b(Xl) 7maXP(XI7X\I|XE)OCw XI H mJHI(XI)
JEN(i)

MAP inference: take X; := arg max;, B(x;) forall i ¢ E.

31/32

Summary: Message Passing vs VE

Variable Elimination Message Passing
® All-Nodes Query.

* Two-way flow (Collect/Distribute).
® Caches intermediates (messages).

® Single Query.
® One-way flow.
® Discards intermediates.

The algorithm we learned is called sum-product BP. If we are interested in MAP inference, we
can maximize over x; instead of summing over them. This is called max-product BP.

32/32

	Exact Inference

