
Lecture 2: Decision Theory & Directed Graphical Models

Thibault Randrianarisoa

University of Toronto, Winter 2026

January 13, 2026

1 / 47



Table of contents

1 Statistical decision theory

‚ Optimal decisions in classification

‚ Optimal decisions for regression

2 Directed graphical models

‚ Basic definitions

‚ Conditional independence on Directed Acyclic Graphs (DAGs)

‚ Pruning/deletion algorithm

2 / 47



Decision theory
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Why do we care about probabilities in the first place?

Answer: They help us make decisions. In some senses, making better decisions/actions is the
only reason to ever think.

Pascal, 1670: When faced with a choice of actions, you should:

1 Determine the value (goodness) of all possible outcomes. V poq @o
(This is subjective and usually hard to determine, but usually only the order of magnitude matters. If you
get it a little wrong, no big deal)

2 Find the probability of each outcome under each action. ppo|aq @o@a
� That’s what this course can help with

3 Choose the action with the highest expected value:

argmax
a

Eppo|aqrV poqs
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Where did Ppoutcome | actionq come from?

That’s what the rest of the course is about.

‚ In general, these numbers will also be expectations over joint distributions of many
possible variables, like which infection we have, the details of our own physiology.

‚ We can always make the model more detailed to include more information.

But this is ultimately what we’re going to do with these probabilities:
Use them to make informed decision to make our lives better.
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Objections to Utility Theory I

Objection 1: I don’t care about the average outcome, some outcomes are simply
unacceptable. I want to make sure my plane never crashes, or my bridge never falls.

Answer: You can’t guarantee anything, you can only make probabilities small. If someone
dying is really bad, just give it a really high negative utility. But you might have to trade some
chances of deaths vs. other outcomes anyway.

Objection 2: You can’t compare the pain of being sick to the cost of medicine in dollars.

Answer: We have to. That is, we usually have to make tradeoffs, and so we have to compare
different types of outcome on the same scale one way or another. We should be explicit about
what we value so that we can discuss it and sanity-check it.
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Objections to Utility Theory II

The World Health Organization estimated the relative quality people assigned to their own lives
under different disabilities:

Condition Life discount factor

Dementia 0.666
Blindness 0.594
Schizophrenia 0.528
AIDS, not on ART 0.505
Burns 20%-60% of body 0.441
Fractured femur 0.372
Moderate depression episode 0.350
Amputation of foot 0.300
Deafness 0.229
Infertility 0.180
Amputation of finger 0.102
Lower back pain 0.061
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Objections to Utility Theory III

Objection 3: It’s computationally expensive to compute conditional probabilities and
expectations over all possible outcomes.

Answer: Agreed! That’s what the tools in this course are designed to help with.
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Decision making

Framework for understanding many of the procedures we consider.

‚ Suppose we have an input vector x and a corresponding target (output) value c with joint
probability distribution: ppx , cq.

‚ Our goal is to predict the output label c given a new value for x .
‚ For now, we focus on classification so c is a categorical variable, but the same reasoning

applies to regression (continuous target).

The joint probability distribution ppx , cq provides a complete summary of uncertainties
associated with these random variables.
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Example: Cancer screening from chest X-ray

Based on the X-ray image, we would like to determine if the patient has cancer or not.

‚ The input vector x is pixel intensities, and the
output c represents the presence of cancer, class C1,
or absence of cancer, class C2.

‚ C1: cancer present
‚ C2: cancer absent

We can use an "arbitrary" encoding for these classes C1
and C2, e.g. take c “ 0 corresponding to class C1, and
c “ 1 corresponds to C2.
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Optimal decisions

Decision Problem

Suppose we estimated the joint distribution ppx , cq using some ML method. Decide whether to
give treatment to the patient or not.

Example (follow-up):
‚ Given a new X-ray image, our goal is to decide which of the two classes that image should

be assigned to.
‚ We could compute conditional probabilities of the two classes, given the input image, for
k “ 1, 2:

ppCk |xq “ ppx |CkqppCkq
ppxq pBayes’ ruleq

‚ Intuitively, pick class with higher posterior probability.
‚ We now formalize in what sense this choice is optimal.
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Misclassification rate

Decision rule: Divide the input space into regions R1, R2 (decision regions) such that all
points x in Rk are assigned to class Ck , k “ 1, 2.

Criterion to optimize: Make as few misclassifications as possible.

‚ Red + green regions: input belongs to class C2, but is
assigned to C1.

‚ Blue region: input belongs to class C1, but is assigned to
C2.

Probability of mistake:
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Misclassification rate

Compare the following two decision rules:

‚ Blue + green area is always included in the ppmistakeq.

‚ On the left there are points x P R1 for which ppx , C2q ° ppx , C1q (red part).

‚ Reduce the red area by moving the threshold x̂ to the left.
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Misclassification error

‚ Misclassification error:

ppmistakeq “
ª

R1

ppx , C2qdx
looooooomooooooon

red+green

`
ª

R2

ppx , C1qdx
looooooomooooooon

blue

and the decision regions R1 and R2 are disjoint.
‚ Therefore, for a particular input x , if ppx , C1q ° ppx , C2q, then we assign x to class C1.

Minimizing misclassification

Since ppx , Ckq “ ppCk |xqppxq, in order to minimize the probability of making mistake, we
assign each x to the class for which the posterior probability ppCk |xq is largest. This minimizes
the misclassification rate.
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Expected loss

Simply minimizing the misclassification rate may not be desirable.
‚ We incorporate a loss function to measure the loss incurred by taking any of the available

decisions.
‚ Suppose that for x , the true class is Ck , but we assign x to class Cj and incur loss of Lkj

(pk , jq-th element of a loss matrix).

Example of a loss matrix for the cancer example:

Decision

cancer healthy

Truth cancer 0 1000

healthy 1 0

Thus the expected loss is given by
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New goal: Minimize expected loss

Therefore, we want to minimize

ErLs “
ÿ

k

ÿ

j

ª

Rj

Lkjppx , Ckqdx

“
ÿ

j

ª

Rj

ÿ

k

Lkjppx , Ckqdx .

Define gjpxq “ ∞
k Lkjppx , Ckq. Notice that gjpxq • 0 and

ErLs “
ÿ

j

ª

Rj

gjpxqdx .

Thus, minimizing ErLs is equivalent to choosing

Rj “ tx : gjpxq † gi pxq for all i ‰ ju.
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Simplifying further

We can also use the product rule ppx , C1q “ ppC1|xqppxq and reduce the problem to:

Discriminant rules

Find regions Rj such that the following is minimized:
ÿ

k

LkjppCk |xq.

That is

Rj “
#
x :

ÿ

k

LkjppCk |xq †
ÿ

k

LkippCk |xq for all i ‰ j

+
.
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The reject option

In high-risk domains (e.g., medicine, finance), we may prefer to say "I don’t know" rather than
making an untrustworthy prediction.

‚ Actions: A “ tC1, C2, . . . , u Y tRu, where action R represents the reject option.
‚ Loss function: Similar to the missclassification rate, we assume the cost of

misclassification is 1, the cost of correct classification is 0, and the cost of rejecting is �r

(where 0 † �r † 1).

Optimal Policy

The optimal action is to pick the most probable class y˚ only if its probability exceeds a
threshold determined by the reject cost:

a˚ “
#
y˚ if ppy˚|xq ° 1 ´ �r

reject otherwise
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Reject option

For the regions where we are relatively uncertain about class membership, we do not have to
make a decision.

Decision

cancer healthy Abstention

Truth cancer 0 1000 10

healthy 1 0 0.1

RR “
#
x :

ÿ

k

LkRppCk |xq †
ÿ

k

LkippCk |xq for all i

+

Missclassification rate: When the conditional class probabilities fall below �r , we refuse to
make a decision.
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Loss functions for regression

‚ Consider an input/target setup px , tq where the target (output) is continuous t P R, and
the joint density is ppx , tq.

‚ We aim to find a regression function ypxq « t which maps inputs to the outputs.

‚ Consider the squared loss function L between ypxq and t to assess the quality of our
estimate Lpypxq, tq “ pypxq ´ tq2.

Goal:

What is the best function ypxq that minimizes the expected loss?

ErLs “
º

Lpypxq, tqppx , tqdxdt.
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Minimizing expected loss: Best regression function

We add and subtract Ert|xs and write

ErLs “
º

pypxq ´ tq2ppx , tqdxdt

“
º

pypxq ´ Ert|xs ` Ert|xs ´ tq2ppx , tqdxdt

“
º

pypxq ´ Ert|xsq2ppx , tqdxdt `
º

pErt|xs ´ tq2ppx , tqdxdt

` 2
º

pypxq ´ Ert|xsqpErt|xs ´ tqppx , tqdxdt

The last term is zero since
ª

pypxq ´ Ert|xsqpErt|xs ´ tqppx , tqdxdt

“
ª

pypxq ´ Ert|xsq
"ª

pErt|xs ´ tqppt|xqdt
*

loooooooooooooooomoooooooooooooooon
“0

ppxqdx “ 0
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Best regression function

‚ We showed that the expected loss is given by the sum of two non-negative terms

ErLs “
º

pypxq ´ Ert|xsq2ppx , tqdxdt `
º

pErt|xs ´ tq2ppx , tqdxdt.

‚ The second term does not depend on ypxq thus choosing the best regression function ypxq
is equivalent to minimizing the first term on the right hand side.

‚ This term is always non-negative and exactly zero if

ypxq “ Ert|xs.

‚ The second term is the expectation of the conditional variance of t|x . It represents the
intrinsic variability of the target data and can be regarded as noise.
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Summary: Decision making

‚ Depending on the application, one needs to choose an appropriate loss function.

‚ Loss function can significantly change the optimal decision rule.

‚ One can always use the reject option and not make a decision.

‚ In case of regression, the optimal map between x and t corresponds to the conditional
expectation Ert|xs.

‚ We focused on classification/regression but similar framework can be used to evaluate any
statistical procedure (e.g. estimation).
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Directed graphical models
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Next:

‚ Graphical models notation

‚ Conditional independence on directed acyclic graphs (DAGs)

‚ DFS and pruning/deletion algorithm
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Joint distributions

‚ The joint distribution of N random variables px1, x2, ..., xNq is a very general way to
encode knowledge about a system.

‚ Assume xi P t0, 1u are binary, then it requires 2N ´ 1 parameters to specify the joint
distribution

ppx1, x2, ..., xNq.

‚ This can be also written as

ppx1, x2, ..., xNq “
Nπ

j“1

ppxj |x1, x2, ..., xj´1q

for any ordering of the variables, where ppx1|x0q “ ppx1q.

Powerful modelling principle

Exploit dependencies among variables and reduce the number of parameters!
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Conditional Independence

‚ Assume there are N random variables x1, x2, ..., xN .

‚ For set A Ä t1, 2, ...,Nu, we denote by xA “ txi : i P Au.

‚ For disjoint A,B ,C , if random variables xA, xB are conditionally independent given xC , we
write

xA K xB |xC
‚ The following conditions are equivalent

‚ xA K xB |xC
‚ ppxA, xB |xC q “ ppxA|xC qppxB |xC q
‚ ppxA|xB , xC q “ ppxA|xC q
‚ ppxB |xA, xC q “ ppxB |xC q
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Directed Acyclic Graphical Models (Bayes’ Nets)

‚ A directed acyclic graphical model (DAG) encodes a
particular form of factorization of the joint
distribution.

‚ Variables are represented by nodes, and edges
represent direct dependence.

DAG induces the following factorization of the joint distribution:

ppx1, ..., xNq “
Nπ

i“1

ppxi |x1, ..., xi´1q “
Nπ

i“1

ppxi |parentspxi qq

where parents(xi ) is the set of nodes with edges pointing to xi .
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Example: Joint factorization induced by a DAG

Recall: In a DAGs ppx1, x2, ..., xNq “ ±N
i“1 ppxi |parentspxi qq.

Consider the following graph:

It induces the following factorization of the joint distribution:

ppx1, x2, ..., x6q “ ppx1qppx2|x1qppx3|x1qppx4|x2qppx5|x3qppx6|x2, x5q
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Conditional Probability Tables (CPT)

In our example, suppose each xi is a binary random variable. How many parameters does it
take to represent this joint distribution?

‚ For example, 2x2 CPT for the node x4
corresponds to ppx4|x2q requires 2 parameters.

‚ Each CPT with Ki parents requires 2
Ki

parameters. In total,
∞

i 2
Ki § N2

maxKi

parameters.

‚ If we allow all possible dependencies

(fully-connected DAG), we need 2
N ´ 1

parameters.

This gives a big reduction in storage and

computations; here 63 vs 13.

31 / 47



Conditional Independence in DAGs

D-separation (directed-separation) is a notion of connectedness in DAGs in which two sets of
nodes may or may not be connected conditioned on a third set of nodes.

‚ Fix a DAG over N nodes 1, 2, ...,N.
‚ This DAG defined factorization of the joint distribution ppx1, ..., xNq.
‚ This factorization implies some conditional independence that can be deducted from

d-separation: if C d-separates A and B in the DAG then xA K xB |xC .
We still have not defined d-separation...

Important reduction

‚ We have xA K xB |xC if and only if xa K xb|xC for all a P A, b P B .
‚ Also C d-separates A and B if and only if it d-separates each a P A and b P B . We note

this property dsepG pA,C,Bq.
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DFS Algorithm for checking independence

To check if an independence is true, we can cycle through each node in A, do a depth-first
search to reach every node in B , and examine the path between them. If all of the paths are
d-separated (i.e., conditionally independent), then

xi K xj | xk

‚ It will be sufficient to consider triples of nodes.

‚ Let’s go through some of the most common triples.
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Causal Chain

ppz |x , yq “ ppx , y , zq
ppx , yq

“ ppxqppy |xqppz |yq
ppxqppy |xq

“ ppz |yq X and Z d-separated given Y .
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Common Cause

Where we think of y as the "common cause" of the two independent effects x and z .

Question: When we condition on y , are x and z independent?
Answer: From the graph, we get

ppx , z |yq “ ppx , y , zq
ppyq “ ppyqppx |yqppz |yq

ppyq “ ppx |yqppz |yq yes!

Thus, Y d-separates X and Z like in the previous case.
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Explaining Away (Common Effect)

Question: When we condition on y , are x and z independent?
Answer: From the graph, we get

ppz |x , yq “ ppxqppzqppy |x , zq
ppxqppy |xq

“ ppzqppy |x , zq
ppy |xq ‰ ppz |yq

images credit Abbeel & Klein
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Pruning / Edge Deletion method

The definition of d-separation calls for considering all paths connecting nodes in X with nodes
in Y. The number of such paths can be exponential, yet we can implement the test efficiently.

Efficient d-separation test

Testing whether X and Y are d-separated by Z in DAG G is equivalent to testing whether X

and Y are disconnected in a new DAG G 1, obtained by pruning G as follows:

1 Delete barren nodes: Delete any leaf node W from DAG G as long as W does not
belong to X Y Y Y Z.

‚ This process is repeated until no more nodes can be deleted.

2 Delete outgoing edges: Delete all edges outgoing from nodes in Z.

If X and Y are disconnected in the resulting graph G 1
, then dsepG pX,Z,Yq holds.
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Example I: Explaining Away (Using Pruning Algorithm)

Case 1: Check X K Z | Y
(Evidence Y is shaded)

X Z

Y

Algorithm Steps:
1. No barren leaves to prune.
2. Y is evidence. Delete out-
going from Y (none exist).

Result: X and Z are connected.

Case 2: Check X K Z
(No evidence)

X Z

Y

Algorithm Steps:
1. Y is a leaf and not
in XYZ . Prune Y .

Result: X and Z are disconnected.
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Example II: Large DAG

In the following graph, is X1 K X6 | tX2,X3u?

X1

X2

X3

X4

X5

X6
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Example II: Solution (Applying Pruning Algorithm)
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Example III

In the following graph, is X2 K X3 | tX1,X6u?

X1

X2

X3

X4

X5

X6
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Example III: Solution (Applying Pruning Algorithm)
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Example of a DAGM: Markov Chain

Markov chains are a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event.

x1 x2 x3 . . .

ppxq “ ppx1qppx2 | x1qppx3 | x2qppx4 | x3q . . .

In other words, it is a model that satisfies the Markov property, i.e., conditional on the present state of

the system, its future and past states are independent.
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Plates

Plates
Because Bayesian methods treat parameters as random variables, we would like to include them
in the graphical model. One way to do this is to repeat all the iid observations explicitly and
show the parameter only once. A better way is to use plates, in which repeated quantities that
are iid are put in a box.

Y

X1 X2 X3 X4

Y

Xj

D

Plates denote replica-
tion of random vari-
ables

The rules of plates are simple: repeat every structure in a box a number of times given by the integer in the
corner of the box (e.g. N or D), updating the plate index variable (e.g. n) as you go. Duplicate every arrow
going into the plate and every arrow leaving the plate by connecting the arrows to each copy of the structure. 44 / 47



Nested Plates

Plates can be nested, in which case their arrows get duplicated also, according to the rule:
draw an arrow from every copy of the source node to every copy of the destination node.

pp⇡q
»

–
Cπ

c“1

Dπ

j“1
pp✓cj q

fi

fl
Nπ

i“1

»

–ppyi | ⇡q
Dπ

j“1
ppxij | yi , ✓j1, . . . , ✓jC q

fi

fl

Plates can also cross (intersect), in which case the nodes at the intersection have multiple indices and get
duplicated a number of times equal to the product of the duplication numbers on all the plates containing them.
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Summary

‚ DAGs are great for encoding conditional independencies.

‚ They can reduce the number of parameters significantly.

‚ Conditional independence between two sets of variables on a DAG can be found using the
Pruning / Edge Deletion method.
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Kahoot quizz

Please enter your UTORid instead!
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