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Decision theory




Why do we care about probabilities in the first place?

Answer: They help us make decisions. In some senses, making better decisions/actions is the
only reason to ever think.

Pascal, 1670: When faced with a choice of actions, you should:

@ Determine the value (goodness) of all possible outcomes. V(o) Vo
(This is subjective and usually hard to determine, but usually only the order of magnitude matters. If you

get it a little wrong, no big deal)

® Find the probability of each outcome under each action. p(ola) VoVa
@  That's what this course can help with

® Choose the action with the highest expected value:

argmaxE, 52 [V(0)]
a
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Where did P(outcome | action) come from?

That's what the rest of the course is about.

® |n general, these numbers will also be expectations over joint distributions of many
possible variables, like which infection we have, the details of our own physiology.

® We can always make the model more detailed to include more information.

But this is ultimately what we're going to do with these probabilities:
Use them to make informed decision to make our lives better.
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Objections to Utility Theory |

Objection 1: | don't care about the average outcome, some outcomes are simply
unacceptable. | want to make sure my plane never crashes, or my bridge never falls.

Answer: You can't guarantee anything, you can only make probabilities small. If someone
dying is really bad, just give it a really high negative utility. But you might have to trade some
chances of deaths vs. other outcomes anyway.

Objection 2: You can't compare the pain of being sick to the cost of medicine in dollars.

Answer: We have to. That is, we usually have to make tradeoffs, and so we have to compare
different types of outcome on the same scale one way or another. We should be explicit about
what we value so that we can discuss it and sanity-check it.
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Objections to Utility Theory Il

The World Health Organization estimated the relative quality people assigned to their own lives
under different disabilities:

Condition ‘ Life discount factor
Dementia 0.666
Blindness 0.594
Schizophrenia 0.528
AIDS, not on ART 0.505
Burns 20%-60% of body 0.441
Fractured femur 0.372
Moderate depression episode 0.350
Amputation of foot 0.300
Deafness 0.229
Infertility 0.180
Amputation of finger 0.102
Lower back pain 0.061
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Objections to Utility Theory IlI

Objection 3: It's computationally expensive to compute conditional probabilities and
expectations over all possible outcomes.

Answer: Agreed! That's what the tools in this course are designed to help with.
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xked

THERE! IF WE STEALONE OF
THOSE CARS, LE CAN GET T THE
BASE AND DEFUSE THE BOMB!

H THE ONE ONTHE LEFT
AELERATES FPSTER BUT
HAS A LOUP‘IR TOP SPEED

OOH, THE RIGHT ONE. HAS
GOOD TRACTION CONTROL.
ARE THE ROADS WET?

PROTIP: |F YOU EVER NEED TO DEFEAT ME,
JUST GIVE. ME TWJO VERY SIMILAR OPTIONS
AND UNLIMITED INTERNET ACCESS.
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Decision making

Framework for understanding many of the procedures we consider.

® Suppose we have an input vector x and a corresponding target (output) value ¢ with joint
probability distribution: p(x, c).
e Qur goal is to predict the output label ¢ given a new value for x.

® For now, we focus on classification so c is a categorical variable, but the same reasoning
applies to regression (continuous target).

The joint probability distribution p(x, ¢) provides a complete summary of uncertainties
associated with these random variables.
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Example: Cancer screening from chest X-ray

Based on the X-ray image, we would like to determine if the patient has cancer or not.

Iy v

® The input vector x is pixel intensities, and the
output c¢ represents the presence of cancer, class Cq,
or absence of cancer, class C».

e (y: cancer present
e (C,: cancer absent

We can use an "arbitrary" encoding for these classes C;
and Cp, e.g. take ¢ = 0 corresponding to class Cy, and
¢ = 1 corresponds to C.
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Optimal decisions

Decision Problem
Suppose we estimated the joint distribution p(x, ¢) using some ML method. Decide whether to

give treatment to the patient or not.

Example (follow-up):
¢ Given a new X-ray image, our goal is to decide which of the two classes that image should
be assigned to.
® We could compute conditional probabilities of the two classes, given the input image, for

k=12

p(x|Cx)P(Ck)
p(x)
® [ntuitively, pick class with higher posterior probability.

® We now formalize in what sense this choice is optimal.

p(Clx) = (Bayes' rule)
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Misclassification rate

Decision rule: Divide the input space into regions Ry, R» (decision regions) such that all
points x in Ry are assigned to class Cy, k = 1,2.

Criterion to optimize: Make as few misclassifications as possible.

8])

p(z,C1)
® Red + green regions: input belongs to class Cy, but is
z,Co .
P assigned to C;.
, ® Blue region: input belongs to class Cy, but is assigned to
: Cs.
R1 : Ra

Probability of mistake:

p(x, Ca)dx + f p(x,C1)dx

p(mistake) = p(X € R1,02) + p(x € RQ,C]_) = f
Ra

Ra
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Misclassification rate

Compare the following two decision rules:

z

EN

p(z,C1) p(x,C1)

p(z,C2) p(x,C2)

Ri Rz R1 R

® Blue + green area is always included in the p(mistake).
® On the left there are points x € Ry for which p(x,C2) > p(x,C1) (red part).

® Reduce the red area by moving the threshold X to the left.
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Misclassification error

e Misclassification error:

p(mistake) = J

plx,Ca)aic+ [ plx,Ca)ae
Ra

Ra2

«

~~ ~~
red+ blue

and the decision regions Ry and R are disjoint.
® Therefore, for a particular input x, if p(x,C1) > p(x,Cz), then we assign x to class C;.

R1 = {x:p(x,C1) > p(x,Ca2)}

Minimizing misclassification
Since p(x,Ck) = p(Ck|x)p(x), in order to minimize the probability of making mistake, we
assign each x to the class for which the posterior probability p(Cx|x) is largest. This minimizes

the misclassification rate.
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Expected loss
Simply minimizing the misclassification rate may not be desirable.
® We incorporate a loss function to measure the loss incurred by taking any of the available
decisions.
® Suppose that for x, the true class is Cx, but we assign x to class C; and incur loss of L;
((k,J)-th element of a loss matrix).

Example of a loss matrix for the cancer example:

Decision
cancer healthy
Truth  cancer 0 1000
healthy 1 0

Thus the expected loss is given by
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New goal: Minimize expected loss

Therefore, we want to minimize

E[L] = ZZJ Li;p(x, Ci)dx
ko j YR
= ZJ Z ijp(X,Ck)dX.
j YRi ok
Define gj(x) = >, Lxjp(x,Cx). Notice that gj(x) = 0 and
E[L] :ZJ gj(x)dx.
J R

Thus, minimizing E[L] is equivalent to choosing

Rj = {x: gj(x) < gi(x) for all i # j}.
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Simplifying further

We can also use the product rule p(x,C1) = p(C1|x)p(x) and reduce the problem to:
Discriminant rules

Find regions R; such that the following is minimized:
Z Lkip(Ck|x).
K

That is

Rj = {X : ZijP(Ck|X) < ZLkiP(Ck|X) for all 175]} .
k k
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The reject option

In high-risk domains (e.g., medicine, finance), we may prefer to say "l don't know" rather than
making an untrustworthy prediction.

® Actions: A = {C1,Ca,...,} U {R}, where action R represents the reject option.

e Loss function: Similar to the missclassification rate, we assume the cost of
misclassification is 1, the cost of correct classification is 0, and the cost of rejecting is A,
(where 0 < A\, < 1).

Optimal Policy
The optimal action is to pick the most probable class y* only if its probability exceeds a
threshold determined by the reject cost:

o y* if p(y*|x) >1-=\,
reject otherwise
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Reject option
For the regions where we are relatively uncertain about class membership, we do not have to
make a decision.

10‘ p(Ciz) p(Czlz)
0
Decision
cancer healthy Abstention
Truth  cancer 0 1000 10
healthy 1 0 0.1
RR = {X . Z LkRp(Ck|X) < Z Lk,-p(Ck|x) for all I}

k k _/ N R
0.0 - > >

reject region

Missclassification rate: When the conditional class probabilities fall below \,, we refuse to
make a decision.
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Loss functions for regression

* Consider an input/target setup (x, t) where the target (output) is continuous t € R, and
the joint density is p(x, t).

® We aim to find a regression function y(x) ~ t which maps inputs to the outputs.

* Consider the squared loss function L between y(x) and t to assess the quality of our
estimate L(y(x),t) = (y(x) — t)2.

Goal:
What is the best function y(x) that minimizes the expected loss?

ff p(x, t)dxdt.
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Minimizing expected loss: Best regression function

We add and subtract E[t|x] and write
:H(yx ) — t)2p(x, t)dxdt
j (y(x) — E[t|x] + E[t|x] — t)2p(x, t)dxdt
J (y(x) — E[¢|x])2p(x, t)dxdt+f (E[t]x] — £)2p(x, t)dxdt
+ 2j (y(x) — E[thx])(E[t]x] — £)p(x, t)ddt
The last term is zero since
[[ 60 = BreiD ELeix) - 0p(x, e
= [0 = Bteb) { [(eLe1e1 — ptelerce | pxyax =0

=0
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Best regression function

We showed that the expected loss is given by the sum of two non-negative terms

J J E[¢|x])2p(x, t)dxdt + f J (E[t|x] — £)2p(x, t)dxdt.

The second term does not depend on y(x) thus choosing the best regression function y(x)
is equivalent to minimizing the first term on the right hand side.

This term is always non-negative and exactly zero if
y(x) = E[t|x].

The second term is the expectation of the conditional variance of t|x. It represents the
intrinsic variability of the target data and can be regarded as noise.
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Summary: Decision making

Depending on the application, one needs to choose an appropriate loss function.
Loss function can significantly change the optimal decision rule.
One can always use the reject option and not make a decision.

In case of regression, the optimal map between x and t corresponds to the conditional
expectation E[t|x].

We focused on classification/regression but similar framework can be used to evaluate any
statistical procedure (e.g. estimation).
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Directed graphical models




Next:

® Graphical models notation
* Conditional independence on directed acyclic graphs (DAGs)

® DFS and pruning/deletion algorithm
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Joint distributions

® The joint distribution of N random variables (x1, x2, ..., xn) is a very general way to
encode knowledge about a system.

* Assume x; € {0,1} are binary, then it requires 2V — 1 parameters to specify the joint
distribution

p(XlaX27~-~7XN)-
® This can be also written as
N
P(X17X27 ~~~uXN) = HP(XJ|X1»X2a "'7Xjfl)
j=1
for any ordering of the variables, where p(xi|x0) = p(x1).

Powerful modelling principle
Exploit dependencies among variables and reduce the number of parameters!

27 /46



Conditional Independence

Assume there are N random variables xq, x2, ..., xn.
For set Ac {1,2,..., N}, we denote by x4 = {x; : i € A}.

For disjoint A, B, C, if random variables x4, xg are conditionally independent given xc, we
write
xa L xg|xc

The following conditions are equivalent
® xa L xg|xc
® p(xa, xalxc) = p(xa|xc)p(xs|xc)
® p(xalxs, xc) = p(xalxc)
® p(xslxa, xc) = p(xs|xc)
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Directed Acyclic Graphical Models (Bayes' Nets)

distribution.

° B e A directed acyclic graphical model (DAG) encodes a
Q . Q particular form of factorization of the joint

\

0‘ ® Variables are represented by nodes, and edges
represent direct dependence.

DAG induces the following factorization of the joint distribution:

N
P(X1y ey X Hp Xi| X1y ooy Xi—1) = np(x,-|parents(x,-))

i=1
where parents(x;) is the set of nodes with edges pointing to x;.
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Example: Joint factorization induced by a DAG

Recall: In a DAGs p(x1,x2, ..., xn) = H,N:1 p(x;|parents(x;)).

Consider the following graph:

It induces the following factorization of the joint distribution:

p(x1, X2, ..., X6) = p(x1)p(x2|x1)p(xs|x1)p(xa|x2) p(xs|x3) p(X6] %2, X5)
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Conditional Probability Tables (CPT)

In our example, suppose each x; is a binary random variable. How many parameters does it
take to represent this joint distribution?

x2 ® For example, 2x2 CPT for the node x4

0o 1

xi “EB corresponds to p(xa|x2) requires 2 parameters.
e Each CPT with K; parents requires 2

o 1 ,\Al
x.? EE "‘“ 1
' @ . ‘,@ parameters. In total, Z,2K’ < N2 Ki
(x) " L parameters.
X

® |If we allow all possible dependencies
C (fully-connected DAG), we need 2V — 1
x El} T Elﬂ This gives a big reduction in storage and

parameters.
computations; here 63 vs 13.
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Conditional Independence in DAGs

D-separation (directed-separation) is a notion of connectedness in DAGs in which two sets of
nodes may or may not be connected conditioned on a third set of nodes.

e Fix a DAG over N nodes 1,2, ..., N.
® This DAG defined factorization of the joint distribution p(xy, ..., xn).

e This factorization implies some conditional independence that can be deducted from
d-separation: if C d-separates A and B in the DAG then xa L xg|xc.

We still have not defined d-separation...
Important reduction

® We have xa L xg|xc if and only if x, L xp|xc for all ae A, be B.
e Also C d-separates A and B if and only if it d-separates each a€ A and b e B.
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DFS Algorithm for checking independence

To check if an independence is true, we can cycle through each node in A, do a depth-first
search to reach every node in B, and examine the path between them. If all of the paths are
d-separated (i.e., conditionally independent), then

xi L x| xx

e |t will be sufficient to consider triples of nodes.

e Let's go through some of the most common triples.
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Causal Chain
Y Z X Y VA

O—0O0—0O O—@—0

SRl
SURCT e 18

X: Low pressure Y: Rain Z: Traffic

p(x,y,z)
p(x,y)
_ P(x)plylx)p(zly)
p(x)p(y|x)
= p(z|ly) X and Z d-separated given Y.

p(z|x,y) =
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Common Cause
Where we think of y as the "common cause" of the two independent effects x and z.

Y: Project I Froject 1
Due'! |
due L

X: Forums  [—
busy

X V4 X z

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(x.y,z) _ ply)p(xly)p(zly)
p(y) p(y)

p(x,zly) = = p(x|y)p(zly) yes!

Thus, Y d-separates X and Z like in the previous case.
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Explaining Away (Common Effect)

X: Ralmng Y: Ballgame
////// || ﬁ
é.
\;
Z:Traffic | 27 ’/‘![

Y

Question: When we condition on y, are x and z independent?
Answer: From the graph, we get

p(x)p(2)p(y|x, z)
p(x)p(y|x)
p(z)p(yl|x, z)

= T o0 # p(zly)

p(zlx,y) =

images credit Abbeel & Klein
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Pruning / Edge Deletion method

The definition of d-separation calls for considering all paths connecting nodes in X with nodes

in Y. The number of such paths can be exponential, yet we can implement the test efficiently.

Efficient d-separation test

Testing whether X and Z are d-separated by Y in DAG G is equivalent to testing whether X
and Z are disconnected in a new DAG G’, obtained by pruning G as follows:

® Delete barren nodes: Delete any leaf node W from DAG G as long as W does not
belongto X UY U Z.

® This process is repeated until no more nodes can be deleted.

® Delete outgoing edges: Delete all edges outgoing from nodes in Y.

If X and Z are disconnected in the resulting graph G’, then dsep. (X, Y, Z) holds.
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Example |: Explaining Away (Using Pruning Algorithm)

Case 1: Check X L Z | Y
(Evidence Y is shaded)

Algorithm Steps:
1. No barren leaves to prune.
2. Y is evidence. Delete out-
going from Y (none exist).

Result: X and Z are connected.

Case 2: Check X L Z

(No evidence)

OO

Algorithm Steps:
1. Y is a leaf and not
in XYZ. Prune Y.

Result: X and Z are disconnected.
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Example II: Large DAG

In the following graph, is X1 L X | {X2, X3}7
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Example II: Solution (Applying Pruning Algorithm)

Yes, following the algorithm:

Result: X; cannot reach X;. Disconnected — Independent.

Step 1: Prune Leaves
Xy is a leaf and not in
query/evidence. Pruned.

Step 2: Delete Outgoing
from Z

Z = {Xo, X3}.

Delete Xo — Xg.

Delete X3 — Xs.
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Example Il

In the following graph, is Xo L X3 | {X1, Xs}?
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Example I1I: Solution (Applying Pruning Algorithm)

No, they are NOT independent.

1. Prune Leaves:

Xa is pruned (barren).
A - '@\
2
- ’/)‘
@ oL 2. Delete Outgoing from Z:

‘)\: Delete X3 — X2 and X3 — Xs.

SR * e (X6 has no outgoing edges).

Result: Path X5 — X5 — X5 — X35 remains. Connected!
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Example of a DAGM: Markov Chain

Markov chains are a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event.

p(x) = p(x1)p(x2 | x1)p(xs [ x2)p(xa | X3) - ..

In other words, it is a model that satisfies the Markov property, i.e., conditional on the present state of
the system, its future and past states are independent.
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https://en.wikipedia.org/wiki/Markov_chain

Plates

Plates
Because Bayesian methods treat parameters as random variables, we would like to include them

in the graphical model. One way to do this is to repeat all the iid observations explicitly and
show the parameter only once. A better way is to use plates, in which repeated quantities that

are iid are put in a box.
Plates denote replica-
tion of random vari-
ables

D

The rules of plates are simple: repeat every structure in a box a number of times given by the integer in the
corner of the box (e.g. N or D), updating the plate index variable (e.g. n) as you go. Duplicate every arrow
going into the plate and every arrow leaving the plate by connecting the arrows to each copy of the structure.
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Nested Plates

Plates can be nested, in which case their arrows get duplicated also, according to the rule:
draw an arrow from every copy of the source node to every copy of the destination node.

c D N D
p(m) [ [T [P0 | ] |pil ™) ] pC |61, 06c)
=1

c=1j=1 j=1

Plates can also cross (intersect), in which case the nodes at the intersection have multiple indices and get
duplicated a number of times equal to the product of the duplication numbers on all the plates containing them.
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Summary

DAGs are great for encoding conditional independencies.
They can reduce the number of parameters significantly.

Conditional independence between two sets of variables on a DAG can be found using the
Pruning / Edge Deletion method.

Next lecture: ?
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